A Tensorflow2.x implementation of Scaled-YOLOv4 as described in Scaled-YOLOv4: Scaling Cross Stage Partial Network
[2021-03-21] Set default optimizer as SGD, because Adam Occasionally return Nan loss when using ciou loss.
[2021-02-21] Add support for: model.fit(dramatic improvement in GPU utilization); online coco evaluation callback; change default optimizer from sgd to adam
[2021-02-11] Add support for: one-click deployment using tensorflow Serving(very fast)
[2021-01-29] Add support for: mosaic,ssd_random_crop
[2021-01-25] Add support for: ciou loss,hard-nms,DIoU-nms,label_smooth,transfer learning,tensorboard
[2021-01-23] Add support for: scales_x_y/eliminate grid sensitivity,accumulate gradients for using big batch size,focal loss,diou loss
[2021-01-16] Add support for: warmup,Cosine annealing scheduler,Eager mode training with tf.GradientTape,support voc/coco dataset format
[2021-01-10] Add support for: yolov4-tiny,yolov4-large p5/p6/p7,online coco evaluation,multi scale training
git clone https://github.com/wangermeng2021/Scaled-YOLOv4-tensorflow2.git
cd Scaled-YOLOv4-tensorflow2
- install tesnorflow ( skip this step if it's already installed)
-
pip install -r requirements.txt
-
Download Pre-trained p5 coco pretrain models and place it under directory 'pretrained/ScaledYOLOV4_p5_coco_pretrain' :
https://drive.google.com/file/d/1glOCE3Y5Q5enW3rpVq3SmKDXzaKIw4YL/view?usp=sharing -
Download Pre-trained p6 coco pretrain models and place it under directory 'pretrained/ScaledYOLOV4_p6_coco_pretrain' :
https://drive.google.com/file/d/1EymbpgiO6VkCCFdB0zSTv0B9yB6T9Fw1/view?usp=sharing -
Download Pre-trained tiny coco pretrain models and place it under directory 'pretrained/ScaledYOLOV4_tiny_coco_pretrain' :
https://drive.google.com/file/d/1x15FN7jCAFwsntaMwmSkkgIzvHXUa7xT/view?usp=sharing -
For training on Pothole dataset(No need to download dataset,it's already included in project):
p5(single scale):python train.py --use-pretrain True --model-type p5 --dataset-type voc --dataset dataset/pothole_voc --num-classes 1 --class-names pothole.names --voc-train-set dataset_1,train --voc-val-set dataset_1,val --epochs 200 --batch-size 4 --multi-scale 416 --augment ssd_random_crop
p5(multi scale):
python train.py --use-pretrain True --model-type p5 --dataset-type voc --dataset dataset/pothole_voc --num-classes 1 --class-names pothole.names --voc-train-set dataset_1,train --voc-val-set dataset_1,val --epochs 200 --batch-size 4 --multi-scale 320,352,384,416,448,480,512 --augment ssd_random_crop
-
For training on Chess Pieces dataset(No need to download dataset,it's already included in project):
tiny(single scale):python train.py --use-pretrain True --model-type tiny --dataset-type voc --dataset dataset/chess_voc --num-classes 12 --class-names chess.names --voc-train-set dataset_1,train --voc-val-set dataset_1,val --epochs 400 --batch-size 32 --multi-scale 416 --augment ssd_random_crop
tiny(multi scale):
python train.py --use-pretrain True --model-type tiny --dataset-type voc --dataset dataset/chess_voc --num-classes 12 --class-names chess.names --voc-train-set dataset_1,train --voc-val-set dataset_1,val --epochs 400 --batch-size 32 --multi-scale 320,352,384,416,448,480,512 --augment ssd_random_crop
- Navigate to http://0.0.0.0:6006
Evaluation results(GTX2080,[email protected]):
model | Chess Pieces | pothole | VOC | COCO |
---|---|---|---|---|
Scaled-YoloV4-tiny(416) | 0.985 | |||
AlexeyAB's YoloV4(416) | 0.814 | |||
Scaled-YoloV4-p5(416) | 0.826 |
-
For detection on Chess Pieces dataset:
python3 detect.py --pic-dir images/chess_pictures --model-path output_model/chess/best_model_tiny_0.985/1 --class-names dataset/chess.names --nms-score-threshold 0.1
detection result:
-
For detection on Pothole dataset:
python3 detect.py --pic-dir images/pothole_pictures --model-path output_model/pothole/best_model_p5_0.827/1 --class-names dataset/pothole.names --nms-score-threshold 0.1
detection result:
- Convert your dataset to Pascal VOC format(you can use labelImg to generate VOC format dataset)
- Generate class names file(such as xxx.names)
-
python train.py --use-pretrain True --model-type p5 --dataset-type voc --dataset your_dataset_root_dir --num-classes num_of_classes --class-names path_of_xxx.names --voc-train-set dataset_1,train --voc-val-set dataset_1,val --epochs 200 --batch-size 8 --multi-scale 416 --augment ssd_random_crop
TensorFlow Serving is a flexible, high-performance serving system for machine learning models, designed for production environments.it include two parts:clients and server, we can run them on one machine.
- Navigate to deployment directory:
cd deployment/tfserving
- Generate a docker image which contains your trained model (it will take minutes,you only have to run it one time):
./gen_image --model-dir ScaledYOLOv4-tensorflow2/output_model/pothole/best_model_p5_0.811
- Deploy model:
-
Server side( docker and nvidia-docker installed ):
./run_image
-
Client side(no need to install tensorflow):
-
install client package
pip install tfservingclient-1.0.0-cp37-cp37m-manylinux1_x86_64.whl
-
predict images
python demo.py --pic-dir xxxx --class-names xxx.names
-
-