Skip to content

iSEE-Laboratory/CVPR24_ATBA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR2024] Efficient and Effective Weakly-Supervised Action Segmentation via Action-Transition-Aware Boundary Alignment

This is the official PyTorch implementation for CVPR2024 paper Efficient and Effective Weakly-Supervised Action Segmentation via Action-Transition-Aware Boundary Alignment.

Environments

  • A single GTX1080Ti
  • Python 3.9.12
  • PyTorch 1.11.0+cu113

Data

The datasets can be download in Link. Please create a ./data folder and put them in. Note that this link does not include the features. Please download the features from the following links and put them into the features subfolder of each dataset:

  • Breakfast: We use the features of MS-TCN. Link.
  • Hollywood: The features are extracted by us. Link.
  • CrossTask: We use the features of POC. Link.

Running

Training commands for three datasets. Please fill in or select the args enclosed by {} first.

  • Breakfast
CUDA_VISIBLE_DEVICES={device ID} python main.py --split {1-4} --sample-rate 10 --seed 0 --epoch 400 --cs-kernel 31 --exp-name {custom experiment name}
  • Hollywood
CUDA_VISIBLE_DEVICES={device ID} python main.py --dataset hollywood --split {1-10} --sample-rate 5 --seed 0 --epoch 300 --cs-kernel 23 --bgw 0.8 --exp-name {custom experiment name}
  • CrossTask
CUDA_VISIBLE_DEVICES={device ID} python main.py --dataset crosstask --split 1 --sample-rate 1 --seed 0 --epoch 300 --cs-kernel 31 --bdy-scale 0.1 --bgw 0.8 --exp-name {custom experiment name}

The running log is automatically saved to the ./logs folder (TensorBoard file ). The final checkpoint is automatically saved to the ./ckpt folder.

Running config: You can also access all hyper-parameters and options in options.py, and change them freely in the running command.

Only Testing: Adding the command options --test --ckpt {name of checkpoint}.

Citation

@inproceedings{xu2024efficient,
title = {Efficient and Effective Weakly-Supervised Action Segmentation via Action-Transition-Aware Boundary Alignment},
author = {Xu, Angchi and Zheng, Wei-Shi},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages