Skip to content

Commit

Permalink
[Feature] Add mindsearch for camp3 (InternLM#1741)
Browse files Browse the repository at this point in the history
* [Feature] Add mindsearch for camp3

* [Enhancement] Move MindSearch to L2
  • Loading branch information
fanqiNO1 authored Aug 22, 2024
1 parent c81f6c3 commit a1e47b6
Show file tree
Hide file tree
Showing 4 changed files with 283 additions and 2 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
|第 3 关| LMDeploy 量化部署进阶实践 | [任务](docs/L2/LMDeploy/task.md)[文档](docs/L2/LMDeploy/readme.md)[视频](https://www.bilibili.com/video/BV1df421q7cR/)| 100元算力点 |
|第 4 关| InternVL 多模态模型部署微调实践 | [任务](https://github.com/InternLM/Tutorial/tree/camp3/docs/L2/InternVL/task.md)[文档](https://github.com/InternLM/Tutorial/tree/camp3/docs/L2/InternVL/joke_readme.md)[视频](https://www.bilibili.com/video/BV1N6p1eXETX/)| 100元算力点 |
|第 5 关| 茴香豆:企业级知识库问答工具 | 任务、文档、视频| 100元算力点 |
|第 6 关| MindSearch CPU-only 版部署 | [任务](docs/L2/MindSearch/task.md)[文档](docs/L2/MindSearch/readme.md) | 100元算力点 |


### 1.4. 彩蛋岛
Expand All @@ -50,8 +51,7 @@
|:-----|:----|:-----|
|第 1 关| 销冠大模型案例 |[文档](docs/EasterEgg/StreamerSales)[视频](https://www.bilibili.com/video/BV1f1421b7Du)|
|第 2 关| InternLM 1.8B 模型 Android 端侧部署实践 | [文档](docs/EasterEgg/Android)[视频](https://www.bilibili.com/video/BV1Ai421a7R6/)|
|第 3 关| MindSearch | [文档](docs/EasterEgg/MindSearch)|
|第 4 关| 手把手带你使用InternLM实现谁是卧底游戏|[文档](docs/EasterEgg/Game)|
|第 3 关| 手把手带你使用InternLM实现谁是卧底游戏|[文档](docs/EasterEgg/Game)|

## 2. 证书

Expand Down
268 changes: 268 additions & 0 deletions docs/L2/MindSearch/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
# MindSearch CPU-only 版部署

随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。

接下来,我们以 InternStudio 算力平台为例,来部署 CPU-only 的 MindSearch 。

## 1. 创建开发机 & 环境配置

由于是 CPU-only,所以我们选择 10% A100 开发机即可,镜像方面选择 cuda-12.2。

然后我们新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来。

```bash
mkdir -p /root/mindsearch
cd /root/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd ..
```

接下来,我们创建一个 conda 环境来安装相关依赖。

```bash
# 创建环境
conda create -n mindsearch python=3.10 -y
# 激活环境
conda activate mindsearch
# 安装依赖
pip install -r /root/mindsearch/MindSearch/requirements.txt
```

## 2. 获取硅基流动 API Key

因为要使用硅基流动的 API Key,所以接下来便是注册并获取 API Key 了。

首先,我们打开 https://account.siliconflow.cn/login 来注册硅基流动的账号(如果注册过,则直接登录即可)。

在完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。

![image](https://github.com/user-attachments/assets/7905a2fc-ef30-4e33-b214-274bebdc9251)

## 3. 启动 MindSearch

### 3.1 启动后端

由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们可以直接执行下面的代码来启动 MindSearch 的后端。

```bash
export SILICON_API_KEY=第二步中复制的密钥
conda activate mindsearch
cd /root/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch
```

### 3.2 启动前端

在后端启动完成后,我们打开新终端运行如下命令来启动 MindSearch 的前端。

```bash
conda activate mindsearch
cd /root/mindsearch/MindSearch
python frontend/mindsearch_gradio.py
```

最后,我们把 8002 端口和 7882 端口都映射到本地。可以在**本地**的 powershell 中执行如下代码:

```bash
ssh -CNg -L 8002:127.0.0.1:8002 -L 7882:127.0.0.1:7882 [email protected] -p <你的 SSH 端口号>
```

然后,我们在**本地**浏览器中打开 `localhost:7882` 即可体验啦。

![image](https://github.com/user-attachments/assets/633a550a-06f1-459f-8e7b-86d99deba61b)

如果遇到了 timeout 的问题,可以按照 [文档](./readme_gpu.md#2-使用-bing-的接口) 换用 Bing 的搜索接口。

## 4. 部署到 HuggingFace Space

最后,我们来将 MindSearch 部署到 HuggingFace Space。

我们首先打开 https://huggingface.co/spaces ,并点击 Create new Space,如下图所示。

![image](https://github.com/user-attachments/assets/bacbe161-2d21-434e-8f78-5738b076cd74)

在输入 Space name 并选择 License 后,选择配置如下所示。

![image](https://github.com/user-attachments/assets/f4d98e6b-5352-4638-a3da-d090140ce3f6)

然后,我们进入 Settings,配置硅基流动的 API Key。如下图所示。

![image](https://github.com/user-attachments/assets/76947d6c-eeba-4230-ab77-04a98c60d4d3)

选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容。

![image](https://github.com/user-attachments/assets/6f4ab268-c5d6-4106-8749-ad282e17ba35)

最后,我们先新建一个目录,准备提交到 HuggingFace Space 的全部文件。

```bash
# 创建新目录
mkdir -p /root/mindsearch/mindsearch_deploy
# 准备复制文件
cd /root/mindsearch
cp -r /root/mindsearch/MindSearch/mindsearch /root/mindsearch/mindsearch_deploy
cp /root/mindsearch/MindSearch/requirements.txt /root/mindsearch/mindsearch_deploy
# 创建 app.py 作为程序入口
touch /root/mindsearch/mindsearch_deploy/app.py
```

其中,app.py 的内容如下:

```python
import json
import os

import gradio as gr
import requests
from lagent.schema import AgentStatusCode

os.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &")

PLANNER_HISTORY = []
SEARCHER_HISTORY = []


def rst_mem(history_planner: list, history_searcher: list):
'''
Reset the chatbot memory.
'''
history_planner = []
history_searcher = []
if PLANNER_HISTORY:
PLANNER_HISTORY.clear()
return history_planner, history_searcher


def format_response(gr_history, agent_return):
if agent_return['state'] in [
AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING
]:
gr_history[-1][1] = agent_return['response']
elif agent_return['state'] == AgentStatusCode.PLUGIN_START:
thought = gr_history[-1][1].split('```')[0]
if agent_return['response'].startswith('```'):
gr_history[-1][1] = thought + '\n' + agent_return['response']
elif agent_return['state'] == AgentStatusCode.PLUGIN_END:
thought = gr_history[-1][1].split('```')[0]
if isinstance(agent_return['response'], dict):
gr_history[-1][
1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```' # noqa: E501
elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:
assert agent_return['inner_steps'][-1]['role'] == 'environment'
item = agent_return['inner_steps'][-1]
gr_history.append([
None,
f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"
])
gr_history.append([None, ''])
return


def predict(history_planner, history_searcher):

def streaming(raw_response):
for chunk in raw_response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b'\n'):
if chunk:
decoded = chunk.decode('utf-8')
if decoded == '\r':
continue
if decoded[:6] == 'data: ':
decoded = decoded[6:]
elif decoded.startswith(': ping - '):
continue
response = json.loads(decoded)
yield (response['response'], response['current_node'])

global PLANNER_HISTORY
PLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))
new_search_turn = True

url = 'http://localhost:8002/solve'
headers = {'Content-Type': 'application/json'}
data = {'inputs': PLANNER_HISTORY}
raw_response = requests.post(url,
headers=headers,
data=json.dumps(data),
timeout=20,
stream=True)

for resp in streaming(raw_response):
agent_return, node_name = resp
if node_name:
if node_name in ['root', 'response']:
continue
agent_return = agent_return['nodes'][node_name]['detail']
if new_search_turn:
history_searcher.append([agent_return['content'], ''])
new_search_turn = False
format_response(history_searcher, agent_return)
if agent_return['state'] == AgentStatusCode.END:
new_search_turn = True
yield history_planner, history_searcher
else:
new_search_turn = True
format_response(history_planner, agent_return)
if agent_return['state'] == AgentStatusCode.END:
PLANNER_HISTORY = agent_return['inner_steps']
yield history_planner, history_searcher
return history_planner, history_searcher


with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")
gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;">MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).</p>""")
gr.HTML("""
<div style="text-align: center; font-size: 16px;">
<a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">🔗 GitHub</a>
<a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📄 Arxiv</a>
<a href="https://huggingface.co/papers/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📚 Hugging Face Papers</a>
<a href="https://huggingface.co/spaces/internlm/MindSearch" style="text-decoration: none; color: #4A90E2;">🤗 Hugging Face Demo</a>
</div>
""")
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
with gr.Column():
planner = gr.Chatbot(label='planner',
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Column():
searcher = gr.Chatbot(label='searcher',
height=700,
show_label=True,
show_copy_button=True,
bubble_full_width=False,
render_markdown=True)
with gr.Row():
user_input = gr.Textbox(show_label=False,
placeholder='帮我搜索一下 InternLM 开源体系',
lines=5,
container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button('Submit')
with gr.Column(scale=1, min_width=20):
emptyBtn = gr.Button('Clear History')

def user(query, history):
return '', history + [[query, '']]

submitBtn.click(user, [user_input, planner], [user_input, planner],
queue=False).then(predict, [planner, searcher],
[planner, searcher])
emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],
queue=False)

demo.queue()
demo.launch(server_name='0.0.0.0',
server_port=7860,
inbrowser=True,
share=True)
```

在最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。
File renamed without changes.
13 changes: 13 additions & 0 deletions docs/L2/MindSearch/task.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# MindSearch CPU-only 版部署

记录复现过程并截图

## 基础任务(完成此任务即完成闯关)

- 按照教程,将 MindSearch 部署到 HuggingFace,并提供截图。

## 闯关材料提交(完成任务并且提交材料视为闯关成功)

- 闯关作业总共分为一个任务,一个任务完成视作闯关成功。
- 请将作业发布到知乎、CSDN等任一社交媒体,将作业链接提交到以下问卷,助教老师批改后将获得 100 算力点奖励!!!
- 提交地址:https://aicarrier.feishu.cn/share/base/form/shrcnZ4bQ4YmhEtMtnKxZUcf1vd

0 comments on commit a1e47b6

Please sign in to comment.