Collection of tools to handle Neuropixel 1.0 and 2.0 data (documentation coming soon...)
Minimum Python version supported is 3.10
pip install ibl-neuropixel
This relies on a fast fourier transform external library: pip install pyfftw
.
Minimal working example to destripe a neuropixel binary file.
from pathlib import Path
from ibldsp.voltage import decompress_destripe_cbin
sr_file = Path('/datadisk/Data/spike_sorting/pykilosort_tests/imec_385_100s.ap.bin')
out_file = Path('/datadisk/scratch/imec_385_100s.ap.bin')
decompress_destripe_cbin(sr_file=sr_file, output_file=out_file, nprocesses=8)
The best way to look at the results is to use viewephys, open an ephys viewer on the raw data.
- tick the destripe box.
- move to a desired location in the file
- ctr+P will make the gain and axis the same on both windows
You can then move within the raw data file.
The following describes the methods implemented in this repository. https://doi.org/10.6084/m9.figshare.19705522
Contribution checklist:
- run tests
- ruff format
- PR to main
Pypi Release checklist:
- Edit the version number in
setup.py
- add release notes in
release_notes.md
flake8
tag=X.Y.Z
git tag -a $tag
git push origin %tag
Create new release with tag X.Y.Z (will automatically publish to PyPI)