Skip to content

Commit

Permalink
Merge branch 'one2'
Browse files Browse the repository at this point in the history
  • Loading branch information
juhuntenburg committed Oct 13, 2021
2 parents ed5aa56 + adcd23d commit c3025dc
Show file tree
Hide file tree
Showing 13 changed files with 112 additions and 135 deletions.
76 changes: 30 additions & 46 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,10 @@ output = dlc("Path/to/file.mp4")
from iblvideo import run_session
run_session("db156b70-8ef8-4479-a519-ba6f8c4a73ee")
```
### Running 10 sessions from the queue
### Running the queue
```python
from iblvideo import run_queue
run_queue(n_sessions=10)
run_queue(machine='mymachine')
```
## Accessing results

Expand All @@ -40,88 +40,71 @@ DLC results are stored on the Flatrion server, with the `dataset_type` being `ca

Install local server as per [this instruction](https://docs.google.com/document/d/1NYVlVD8OkwRYUaPeHo3ZFPuwpv_E5zgUVjLsV0V5Ko4).

Install CUDA 10.0 libraries as documented [here](https://docs.google.com/document/d/1UyXUOx21mwrpBtCcS51avnikmyCPCzXEtTRaTetH-Mo) to match the TensorFlow version 1.13.1 required for DLC.
Install CUDA 11.2 libraries as documented [here](https://docs.google.com/document/d/1UyXUOx21mwrpBtCcS51avnikmyCPCzXEtTRaTetH-Mo/edit#heading=h.39mk45fhbn1l)

Install cuDNN, an extension of the Cuda Toolkit for deep neural networks: Download cuDNN from FlatIron as shown below, or find it online.

```bash
wget --user iblmember --password check_your_one_settings http://ibl.flatironinstitute.org/resources/cudnn-10.0-linux-x64-v7.6.5.32.tgz
tar -xvf cudnn-10.0-linux-x64-v7.6.5.32.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
wget --user iblmember --password check_your_one_settings http://ibl.flatironinstitute.org/resources/cudnn-11.2-linux-x64-v8.1.1.33.tgz
tar -xvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.2/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.2/lib64
sudo chmod a+r /usr/local/cuda-11.2/include/cudnn.h /usr/local/cuda-11.2/lib64/libcudnn*
```

(optional): check CUDNN installation or for troubleshooting only)
Download and unzip https://ibl.flatironinstitute.org/resources/cudnn_samples_v7.zip
If necessary, setup your CUDA environment variables with the version you want to test

```
cd cudnn_samples_v7/mnistCUDNN/
make clean && make
./mnistCUDNN
```

Should print a message that finishes with Test passed !

### Create a Python environment with TensorFlow and DLC

Install a few things system wide and then python3.7
Install python3.8 (if necessary)

```bash
sudo apt update
sudo apt install software-properties-common
sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt-get install python3.7-tk
sudo apt install python3.7 python3.7-dev
sudo apt-get install python3.8-tk
sudo apt install python3.8 python3.8-dev
```

Create and activate a Python 3.7 environment called e.g. dlcenv
Create and activate an environment called e.g. dlcenv

```bash
mkdir -p ~/Documents/PYTHON/envs
cd ~/Documents/PYTHON/envs
virtualenv dlcenv --python=python3.7
virtualenv dlcenv --python=python3.8
source ~/Documents/PYTHON/envs/dlcenv/bin/activate
```

Install packages (please observe order of those commands and Ubuntu version, you may need to change the wxpython link!)
Install packages

```bash
pip install -U setuptools
pip install git+https://github.com/int-brain-lab/[email protected]
pip install https://extras.wxpython.org/wxPython4/extras/linux/gtk3/ubuntu-18.04/wxPython-4.0.7-cp37-cp37m-linux_x86_64.whl
pip install tensorflow-gpu==1.13.1
pip install deeplabcut==2.1.10
pip install git+https://github.com/int-brain-lab/ibllib.git
pip install tensorflow
pip install deeplabcut
```

### Test if tensorflow and deeplabcut installation was successful

Export environment variable to avoid tensorflow issue and point to CUDA libraries
Export environment variables
(the second command might already be set up with your cuda install)
```bash
export TF_FORCE_GPU_ALLOW_GROWTH='true'
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:/usr/local/cuda-10.0/extras/CUPTI/lib64:/lib/nccl/cuda-10:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:/usr/local/cuda-11.2/extras/CUPTI/lib64:$LD_LIBRARY_PATH
```

Try importing tensorflow and deeplabcut
### Test if tensorflow and deeplabcut installation was successful

```
python -c 'import deeplabcut, tensorflow'
```

(If you get a pandas incompatibility error, try this:
```
pip uninstall pandas
pip install pandas==1.1.5
```
)
If you get errors make sure the cuda libraries are correctly added to your paths in .bashrc as explained [here](https://docs.google.com/document/d/1UyXUOx21mwrpBtCcS51avnikmyCPCzXEtTRaTetH-Mo/edit#heading=h.ryxfckh2bbpl).

If this is successful (no errors) you can set up an alias in your .bashrc file to easily enter the iblvideo environment:
Once the import goes through without errors (it is ok to get the warning that you cannot use the GUI), you can set up an alias in your .bashrc file to easily enter the iblvideo environment:
```bash
nano ~/.bashrc
```
Enter this line under the other aliases:
```bash
alias dlcenv="export TF_FORCE_GPU_ALLOW_GROWTH='true'; export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:/usr/local/cuda-10.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH; source ~/Documents/PYTHON/envs/dlcenv/bin/activate"
alias dlcenv="export TF_FORCE_GPU_ALLOW_GROWTH='true'; export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:/usr/local/cuda-11.2/extras/CUPTI/lib64:$LD_LIBRARY_PATH; source ~/Documents/PYTHON/envs/dlcenv/bin/activate"

```
After opening a new terminal you should be able to type `dlcenv` and end up in an environment in which you can import tensorflow and deeplabcut like above.

Expand Down Expand Up @@ -160,10 +143,11 @@ The version of DLC weights and DLC test data are synchronized with the MAJOR.MIN

If you update any of the DLC weights, you also need to update the MINOR version of the code and the DLC test data, and vice versa.
1. For the weights, create a new directory called `weights_v{MAJOR}.{MINOR}` and copy the new weights, plus any unchanged weights into it.
2. Make a new `dlc_test_data_v{MAJOR}.{MINOR}` directory, with subdirectories `input` and `output`.
2. Make a new `dlc_test_data_v{MAJOR}.{MINOR}` directory.
3. Copy the three videos from the `input` folder of the previous version dlc_test_data to the new one.
4. Create the three parquet files to go in `output` by running iblvideo.dlc() with the new weights folder as `path_dlc`, and each of the videos in the new `input` folder as `file_mp4`.
5. Zip and upload the new weights and test data folders to FlatIron :
4. Create the three parquet files to go in by running iblvideo.dlc() with the new weights folder as `path_dlc`, and each of the videos in the new `input` folder as `file_mp4`.
5. Rename the newly created folder `alf` inside the dlc_test_data folder into `output`.
6. Zip and upload the new weights and test data folders to FlatIron :
```
/resources/dlc/weights_v{MAJOR}.{MINOR}.zip
/integration/dlc/test_data/dlc_test_data_v{MAJOR}.{MINOR}.zip
Expand Down
27 changes: 0 additions & 27 deletions docker/Dockerfile

This file was deleted.

17 changes: 8 additions & 9 deletions docker/Dockerfile.base
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
#docker build -t internationalbrainlab/dlc:base -f Dockerfile.base
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu18.04
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu18.04

# link the cuda libraries
ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
Expand All @@ -8,22 +8,21 @@ ENV LD_LIBRARY_PATH /usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH
ENV TZ=Europe/Paris
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone

# Install python3.7
# Install python3.8 and some other packages
RUN apt-get update
RUN apt-get install -y software-properties-common
RUN add-apt-repository ppa:deadsnakes/ppa
RUN apt-get update
RUN apt-get install -y python3.7 python3.7-dev python3.7-tk python3-pip python3.7-venv git ffmpeg libgtk-3-dev
RUN apt-get install -y python3.8 python3.8-dev python3.8-tk python3-pip python3.8-venv git ffmpeg libgtk-3-dev

# Install Python dependencies
ARG PYTHON=python3.7
ARG PYTHON=python3.8
ENV LANG C.UTF-8
RUN ln -sf /usr/bin/${PYTHON} /usr/local/bin/python3
RUN python3 -m pip install --upgrade pip
RUN python3 -m pip install "dask[complete]"
RUN python3 -m pip install ibllib>=1.9.0
RUN python3 -m pip install https://extras.wxpython.org/wxPython4/extras/linux/gtk3/ubuntu-18.04/wxPython-4.0.7-cp37-cp37m-linux_x86_64.whl
RUN python3 -m pip install tensorflow-gpu==1.13.1
RUN python3 -m pip install -U setuptools
RUN python3 -m pip install git+https://github.com/int-brain-lab/ibllib.git
RUN python3 -m pip install tensorflow
RUN python3 -m pip install deeplabcut

ENV TF_FORCE_GPU_ALLOW_GROWTH 'true'
ENV TF_FORCE_GPU_ALLOW_GROWTH 'true'
11 changes: 11 additions & 0 deletions docker/Dockerfile.v2.0
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
#docker build -t internationalbrainlab/dlc:v2.0 -f Dockerfile.v2.0 --no-cache .
FROM internationalbrainlab/dlc:base

# copy the weights and test data
COPY weights_v2.0 weights_v2.0
COPY me_test_data me_test_data
COPY dlc_test_data_v2.0 dlc_test_data_v2.0

# clone the code
RUN git clone --depth 1 --single-branch --branch one2 https://github.com/int-brain-lab/iblvideo.git
ENV PYTHONPATH=/iblvideo
4 changes: 2 additions & 2 deletions docker/README_DOCKER.md
Original file line number Diff line number Diff line change
Expand Up @@ -104,15 +104,15 @@ Update the image version in `docker-compose.yaml` test and queue configurations.
cd ~/Documents/PYTHON
git clone https://github.com/int-brain-lab/iblvideo
cd iblvideo/docker
docker build -t internationalbrainlab/dlc:base -f Dockerfile.base # this one will take a long time
docker build -t internationalbrainlab/dlc:base -f Dockerfile.base --no-cache . # this one will take a long time
```
Test the image by accessing a shell inside of the container:
```shell
docker run -it --rm --gpus all -u $(id -u):$(id -g) -v /mnt/s0/Data/FlatIron:/mnt/s0/Data/FlatIron -v ~/Documents/PYTHON/iblvideo:/root internationalbrainlab/dlc:base
python3
from import deeplabcut
import deeplabcut
```
Eventually send the image to dockerhub
Expand Down
6 changes: 3 additions & 3 deletions docker/docker-compose.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,14 @@ services:
- ~/Documents/PYTHON/iblvideo:/iblvideo
- ~:/root
queue:
image: internationalbrainlab/dlc:v1.2
command: python3 -c "from iblvideo import run_queue; run_queue()"
image: internationalbrainlab/dlc:v2.0
command: python3 -c "from iblvideo import run_queue; run_queue(target_versions=('1.2.0', '2.0.0'))"
runtime: nvidia
volumes:
- ~:/root
- /mnt/s0/Data/FlatIron:/mnt/s0/Data/FlatIron
test:
image: internationalbrainlab/dlc:v1.2
image: internationalbrainlab/dlc:v2.0
command: bash -c "nvcc --version; pytest -s /iblvideo/iblvideo/tests"
runtime: nvidia
volumes:
Expand Down
2 changes: 1 addition & 1 deletion iblvideo/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

__version__ = '1.2.0' # This is the only place where the version is hard coded, only adapt here
__version__ = '2.0.0' # This is the only place where the version is hard coded, only adapt here

import deeplabcut

Expand Down
2 changes: 0 additions & 2 deletions iblvideo/motion_energy.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,8 @@
import cv2
import logging

from oneibl.one import ONE
from ibllib.io.video import get_video_frames_preload, label_from_path
from ibllib.io.extractors.camera import get_video_length
from oneibl.stream import VideoStreamer

_log = logging.getLogger('ibllib')

Expand Down
Loading

0 comments on commit c3025dc

Please sign in to comment.