Skip to content

Commit

Permalink
fix dlframe (#3133)
Browse files Browse the repository at this point in the history
  • Loading branch information
Le-Zheng authored Jun 24, 2021
1 parent 5e22513 commit 039bb8c
Show file tree
Hide file tree
Showing 9 changed files with 1,684 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dlframes

import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.{Criterion, Module}
import org.apache.spark.ml.adapter.SchemaUtils
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.types._

import scala.reflect.ClassTag

/**
* [[DLClassifier]] is a specialized [[DLEstimator]] that simplifies the data format for
* classification tasks. It only supports label column of DoubleType.
* and the fitted [[DLClassifierModel]] will have the prediction column of DoubleType.
*
* @param model BigDL module to be optimized
* @param criterion BigDL criterion method
* @param featureSize The size (Tensor dimensions) of the feature data.
*/
@deprecated("`DLClassifier` is deprecated." +
"com.intel.analytics.bigdl.dlframes is deprecated in BigDL 0.11, " +
"and will be removed in future releases", "0.10.0")
class DLClassifier[T: ClassTag](
@transient override val model: Module[T],
override val criterion : Criterion[T],
override val featureSize : Array[Int],
override val uid: String = Identifiable.randomUID("dlClassifier")
)(implicit ev: TensorNumeric[T])
extends DLEstimator[T](model, criterion, featureSize, Array(1)) {

override protected def wrapBigDLModel(
m: Module[T], featureSize: Array[Int]): DLClassifierModel[T] = {
val dlModel = new DLClassifierModel[T](m, featureSize)
copyValues(dlModel.setParent(this)).asInstanceOf[DLClassifierModel[T]]
}

override def transformSchema(schema : StructType): StructType = {
validateParams(schema)
SchemaUtils.appendColumn(schema, $(predictionCol), DoubleType)
}

override def copy(extra: ParamMap): DLClassifier[T] = {
copyValues(new DLClassifier(model, criterion, featureSize), extra)
}
}

/**
* [[DLClassifierModel]] is a specialized [[DLModel]] for classification tasks.
* The prediction column will have the datatype of Double.
*
* @param model BigDL module to be optimized
* @param featureSize The size (Tensor dimensions) of the feature data.
*/
@deprecated("`DLClassifierModel` is deprecated." +
"com.intel.analytics.bigdl.dlframes is deprecated in BigDL 0.11, " +
"and will be removed in future releases", "0.10.0")
class DLClassifierModel[T: ClassTag](
@transient override val model: Module[T],
featureSize : Array[Int],
override val uid: String = "DLClassifierModel"
)(implicit ev: TensorNumeric[T]) extends DLModel[T](model, featureSize) {

protected override def outputToPrediction(output: Tensor[T]): Any = {
if (output.size().deep == Array(1).deep) {
val raw = ev.toType[Double](output.toArray().head)
if (raw > 0.5) 1.0 else 0.0
} else {
ev.toType[Double](output.max(1)._2.valueAt(1))
}
}

override def transformSchema(schema : StructType): StructType = {
validateDataType(schema, $(featuresCol))
SchemaUtils.appendColumn(schema, $(predictionCol), DoubleType)
}
}

Loading

0 comments on commit 039bb8c

Please sign in to comment.