-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
1,135 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
161 changes: 161 additions & 0 deletions
161
python/llm/example/CPU/HF-Transformers-AutoModels/streaming/run_streaming_llama.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# =========================================================================== | ||
# | ||
# This file is adapted from | ||
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/utils.py# which is licensed under the MIT | ||
# license: | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2023 MIT HAN Lab | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
import warnings | ||
|
||
warnings.filterwarnings("ignore") | ||
|
||
import torch | ||
import argparse | ||
import json | ||
import os | ||
from tqdm import tqdm | ||
from streaming_llm.utils import load, download_url, load_jsonl | ||
from streaming_llm.enable_streaming_llm import enable_streaming_llm | ||
|
||
|
||
@torch.no_grad() | ||
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len): | ||
outputs = model( | ||
input_ids=input_ids, | ||
past_key_values=past_key_values, | ||
use_cache=True, | ||
) | ||
past_key_values = outputs.past_key_values | ||
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) | ||
generated_ids = [pred_token_idx.item()] | ||
pos = 0 | ||
for _ in range(max_gen_len - 1): | ||
outputs = model( | ||
input_ids=pred_token_idx, | ||
past_key_values=past_key_values, | ||
use_cache=True, | ||
) | ||
past_key_values = outputs.past_key_values | ||
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) | ||
generated_ids.append(pred_token_idx.item()) | ||
generated_text = ( | ||
tokenizer.decode( | ||
generated_ids, | ||
skip_special_tokens=True, | ||
clean_up_tokenization_spaces=True, | ||
spaces_between_special_tokens=False, | ||
) | ||
.strip() | ||
.split(" ") | ||
) | ||
|
||
now = len(generated_text) - 1 | ||
if now > pos: | ||
#print(" ".join(generated_text[pos:now]), end=" ", flush=True) | ||
pos = now | ||
|
||
if pred_token_idx == tokenizer.eos_token_id: | ||
break | ||
#print(" ".join(generated_text[pos:]), flush=True) | ||
return past_key_values | ||
|
||
|
||
@torch.no_grad() | ||
def streaming_inference(model, tokenizer, prompts, kv_cache=None, max_gen_len=1000): | ||
past_key_values = None | ||
for idx, prompt in enumerate(prompts): | ||
prompt = "USER: " + prompt + "\n\nASSISTANT: " | ||
print("\n" + prompt, end="") | ||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | ||
input_ids = input_ids.to(model.device) | ||
seq_len = input_ids.shape[1] | ||
if kv_cache is not None: | ||
space_needed = seq_len + max_gen_len | ||
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) | ||
|
||
past_key_values = greedy_generate( | ||
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len | ||
) | ||
|
||
|
||
def main(args): | ||
model_name_or_path = args.model_name_or_path | ||
model, tokenizer = load(model_name_or_path) | ||
test_filepath = os.path.join(args.data_root, "mt_bench.jsonl") | ||
print(f"Loading data from {test_filepath} ...") | ||
|
||
if not os.path.exists(test_filepath): | ||
download_url( | ||
"https://raw.githubusercontent.com/lm-sys/FastChat/main/fastchat/llm_judge/data/mt_bench/question.jsonl", | ||
args.data_root, | ||
) | ||
os.rename(os.path.join(args.data_root, "question.jsonl"), test_filepath) | ||
|
||
list_data = load_jsonl(test_filepath) | ||
prompts = [] | ||
for sample in list_data: | ||
prompts += sample["turns"] | ||
|
||
if args.enable_streaming: | ||
kv_cache = enable_streaming_llm( | ||
model, start_size=args.start_size, recent_size=args.recent_size | ||
) | ||
else: | ||
kv_cache = None | ||
|
||
streaming_inference( | ||
model, | ||
tokenizer, | ||
prompts, | ||
kv_cache, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--model_name_or_path", type=str, default="meta-llama/Llama-2-7b-chat-hf" | ||
) | ||
parser.add_argument("--data_root", type=str, default="data/") | ||
parser.add_argument("--enable_streaming", action="store_true") | ||
parser.add_argument("--start_size", type=int, default=4) | ||
parser.add_argument("--recent_size", type=int, default=2000) | ||
args = parser.parse_args() | ||
|
||
main(args) |
Empty file.
81 changes: 81 additions & 0 deletions
81
...lm/example/CPU/HF-Transformers-AutoModels/streaming/streaming_llm/enable_streaming_llm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# =========================================================================== | ||
# | ||
# This file is adapted from | ||
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/utils.py# which is licensed under the MIT | ||
# license: | ||
# | ||
# MIT License | ||
# | ||
# Copyright (c) 2023 MIT HAN Lab | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
from kv_cache import StartRecentKVCache | ||
|
||
|
||
def enable_streaming_llm(model, start_size, recent_size): | ||
if "llama" in model.config.model_type: | ||
k_seq_dim = v_seq_dim = 2 | ||
from pos_shift.modify_llama import ( | ||
enable_llama_pos_shift_attention, | ||
) | ||
|
||
enable_llama_pos_shift_attention(model) | ||
elif "mpt" in model.config.model_type: | ||
v_seq_dim = 2 | ||
k_seq_dim = 3 | ||
elif "gpt_neox" in model.config.model_type: | ||
k_seq_dim = v_seq_dim = 2 | ||
from pos_shift.modify_gpt_neox import ( | ||
enable_gpt_neox_pos_shift_attention, | ||
) | ||
|
||
enable_gpt_neox_pos_shift_attention(model) | ||
elif "falcon" in model.config.model_type: | ||
v_seq_dim = 1 | ||
k_seq_dim = 1 | ||
from pos_shift.modify_falcon import ( | ||
enable_falcon_pos_shift_attention, | ||
) | ||
|
||
enable_falcon_pos_shift_attention(model) | ||
else: | ||
raise ValueError(f"got {model.config.model_type}") | ||
kv_cache = StartRecentKVCache( | ||
start_size=start_size, | ||
recent_size=recent_size, | ||
k_seq_dim=k_seq_dim, | ||
v_seq_dim=v_seq_dim, | ||
) | ||
return kv_cache |
Oops, something went wrong.