Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
songhappy committed Oct 25, 2023
1 parent 8f78ae1 commit 04c2aeb
Show file tree
Hide file tree
Showing 12 changed files with 1,135 additions and 0 deletions.
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/utils.py# which is licensed under the MIT
# license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import warnings

warnings.filterwarnings("ignore")

import torch
import argparse
import json
import os
from tqdm import tqdm
from streaming_llm.utils import load, download_url, load_jsonl
from streaming_llm.enable_streaming_llm import enable_streaming_llm


@torch.no_grad()
def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len):
outputs = model(
input_ids=input_ids,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids = [pred_token_idx.item()]
pos = 0
for _ in range(max_gen_len - 1):
outputs = model(
input_ids=pred_token_idx,
past_key_values=past_key_values,
use_cache=True,
)
past_key_values = outputs.past_key_values
pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1)
generated_ids.append(pred_token_idx.item())
generated_text = (
tokenizer.decode(
generated_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
spaces_between_special_tokens=False,
)
.strip()
.split(" ")
)

now = len(generated_text) - 1
if now > pos:
#print(" ".join(generated_text[pos:now]), end=" ", flush=True)
pos = now

if pred_token_idx == tokenizer.eos_token_id:
break
#print(" ".join(generated_text[pos:]), flush=True)
return past_key_values


@torch.no_grad()
def streaming_inference(model, tokenizer, prompts, kv_cache=None, max_gen_len=1000):
past_key_values = None
for idx, prompt in enumerate(prompts):
prompt = "USER: " + prompt + "\n\nASSISTANT: "
print("\n" + prompt, end="")
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(model.device)
seq_len = input_ids.shape[1]
if kv_cache is not None:
space_needed = seq_len + max_gen_len
past_key_values = kv_cache.evict_for_space(past_key_values, space_needed)

past_key_values = greedy_generate(
model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len
)


def main(args):
model_name_or_path = args.model_name_or_path
model, tokenizer = load(model_name_or_path)
test_filepath = os.path.join(args.data_root, "mt_bench.jsonl")
print(f"Loading data from {test_filepath} ...")

if not os.path.exists(test_filepath):
download_url(
"https://raw.githubusercontent.com/lm-sys/FastChat/main/fastchat/llm_judge/data/mt_bench/question.jsonl",
args.data_root,
)
os.rename(os.path.join(args.data_root, "question.jsonl"), test_filepath)

list_data = load_jsonl(test_filepath)
prompts = []
for sample in list_data:
prompts += sample["turns"]

if args.enable_streaming:
kv_cache = enable_streaming_llm(
model, start_size=args.start_size, recent_size=args.recent_size
)
else:
kv_cache = None

streaming_inference(
model,
tokenizer,
prompts,
kv_cache,
)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path", type=str, default="meta-llama/Llama-2-7b-chat-hf"
)
parser.add_argument("--data_root", type=str, default="data/")
parser.add_argument("--enable_streaming", action="store_true")
parser.add_argument("--start_size", type=int, default=4)
parser.add_argument("--recent_size", type=int, default=2000)
args = parser.parse_args()

main(args)
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ===========================================================================
#
# This file is adapted from
# https://github.com/mit-han-lab/streaming-llm/blob/main/streaming_llm/utils.py# which is licensed under the MIT
# license:
#
# MIT License
#
# Copyright (c) 2023 MIT HAN Lab
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from kv_cache import StartRecentKVCache


def enable_streaming_llm(model, start_size, recent_size):
if "llama" in model.config.model_type:
k_seq_dim = v_seq_dim = 2
from pos_shift.modify_llama import (
enable_llama_pos_shift_attention,
)

enable_llama_pos_shift_attention(model)
elif "mpt" in model.config.model_type:
v_seq_dim = 2
k_seq_dim = 3
elif "gpt_neox" in model.config.model_type:
k_seq_dim = v_seq_dim = 2
from pos_shift.modify_gpt_neox import (
enable_gpt_neox_pos_shift_attention,
)

enable_gpt_neox_pos_shift_attention(model)
elif "falcon" in model.config.model_type:
v_seq_dim = 1
k_seq_dim = 1
from pos_shift.modify_falcon import (
enable_falcon_pos_shift_attention,
)

enable_falcon_pos_shift_attention(model)
else:
raise ValueError(f"got {model.config.model_type}")
kv_cache = StartRecentKVCache(
start_size=start_size,
recent_size=recent_size,
k_seq_dim=k_seq_dim,
v_seq_dim=v_seq_dim,
)
return kv_cache
Loading

0 comments on commit 04c2aeb

Please sign in to comment.