Skip to content

Commit

Permalink
Add npu benchmark all-in-one script (#11571)
Browse files Browse the repository at this point in the history
* npu benchmark
  • Loading branch information
leonardozcm authored Jul 15, 2024
1 parent 019da6c commit 06745e5
Show file tree
Hide file tree
Showing 5 changed files with 80 additions and 2 deletions.
1 change: 1 addition & 0 deletions python/llm/dev/benchmark/all-in-one/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ test_api:
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
Expand Down
1 change: 1 addition & 0 deletions python/llm/dev/benchmark/all-in-one/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ test_api:
# - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8)
# - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding
# - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
Expand Down
74 changes: 74 additions & 0 deletions python/llm/dev/benchmark/all-in-one/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_speculative_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, batch_size)
elif test_api == 'pipeline_parallel_gpu':
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
elif test_api == 'transformers_int4_npu_win':
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
else:
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")

Expand Down Expand Up @@ -567,6 +569,78 @@ def run_transformer_int4_gpu(repo_id,
gc.collect()
return result


def transformers_int4_npu_win(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials,
num_beams,
low_bit,
batch_size):
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer

model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True).eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
load_time = end - st
print(">> loading of model costs {}s".format(load_time))

model = BenchmarkWrapper(model)

result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
# As different tokenizer has different encodings,
# in_len.txt maybe shorter than we need,
# use much longer context to make sure input length
test_length = min(in_len*2, 8192)
while test_length not in [32, 256, 1024, 2048, 8192]:
test_length = test_length * 2
input_str = open(f"prompt/continuation/{test_length}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
min_new_tokens=out_len, num_beams=num_beams)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
actual_in_len, actual_out_len, load_time])
del model
gc.collect()
return result


def run_optimize_model_gpu(repo_id,
local_model_hub,
in_out_pairs,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Run Large Language Model on Intel NPU
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on Intel NPUs. See the table blow for verified models.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on LLM models on [Intel NPUs](../../../README.md). See the table blow for verified models.

## Verified Models

Expand All @@ -8,12 +8,14 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
| Llama2 | [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
| Llama3 | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
| Chatglm3 | [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) |
| Chatglm2 | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) |
| Qwen2 | [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) |
| MiniCPM | [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) |
| Phi-3 | [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) |
| Stablelm | [stabilityai/stablelm-zephyr-3b](https://huggingface.co/stabilityai/stablelm-zephyr-3b) |
| Baichuan2 | [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) |
| Deepseek | [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
| Mistral | [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |

## 0. Requirements
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Run Large Multimodal Model on Intel NPU
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). See the table blow for verified models.

## Verified Models

Expand Down

0 comments on commit 06745e5

Please sign in to comment.