Skip to content

Commit

Permalink
complete generate.py & readme
Browse files Browse the repository at this point in the history
  • Loading branch information
ATMxsp01 committed Dec 30, 2024
1 parent e60adb1 commit 3256fe4
Show file tree
Hide file tree
Showing 3 changed files with 163 additions and 7 deletions.
151 changes: 151 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# Qwen2-VL
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install accelerate==0.33.0
pip install qwen_vl_utils
pip install "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.21.0
pip install addict simplejson python-dateutil sortedcontainers
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install accelerate==0.33.0
pip install qwen_vl_utils
pip install "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.21.0
pip install addict simplejson python-dateutil sortedcontainers
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU and Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>


> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe this image.'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
Describe this image.
-------------------- Output --------------------
The image depicts a young child holding a small white teddy bear. The teddy bear is dressed in a pink outfit, which includes a pink skirt and a
```

```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
请描述这幅图片
-------------------- Output --------------------
这是一张小女孩抱着一个白色的小熊玩偶的图片。小女孩穿着一件粉红色的条纹连衣裙,手里抱着的小熊玩偶
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
17 changes: 11 additions & 6 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,8 @@
import argparse
import numpy as np

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from ipex_llm.transformers import Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from ipex_llm import optimize_model


if __name__ == '__main__':
Expand All @@ -42,16 +40,23 @@
help="Use models from modelscope")

args = parser.parse_args()
if args.modelscope:
from modelscope import AutoProcessor
model_hub = 'modelscope'
else:
from transformers import AutoProcessor
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path

model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
torch_dtype='auto',
modules_to_not_convert=["visual"],
load_in_4bit=True,
low_cpu_mem_usage=True,
use_cache=True,)

model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"])
use_cache=True,
model_hub=model_hub)

# Use .float() for better output, and use .half() for better speed
model = model.half().to("xpu")
Expand Down
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -842,4 +842,4 @@ class AutoModelForTokenClassification(_BaseAutoModelClass):

if transformers.__version__ >= '4.45.0':
class Qwen2VLForConditionalGeneration(_BaseAutoModelClass):
HF_MODEL = transformers.Qwen2VLForConditionalGeneration
HF_Model = transformers.Qwen2VLForConditionalGeneration

0 comments on commit 3256fe4

Please sign in to comment.