Skip to content

Commit

Permalink
fix minicpm for transformers>=4.39
Browse files Browse the repository at this point in the history
  • Loading branch information
songhappy committed Jul 9, 2024
1 parent 099486a commit 3565e5b
Show file tree
Hide file tree
Showing 2 changed files with 315 additions and 3 deletions.
18 changes: 15 additions & 3 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1672,7 +1672,21 @@ def safe_bmm_fwd(*args, **kwargs):
stablelm_model_forward
)
elif model.config.model_type == 'minicpm':
if version.parse(trans_version) >= version.parse("4.39.0"):
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward_4_39
convert_forward(model,
module.MiniCPMAttention,
minicpm_attention_forward_4_39)
else:
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward_4_38
convert_forward(model,
module.MiniCPMAttention,
minicpm_attention_forward_4_38)
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
convert_forward(model,
module.MiniCPMAttention,
minicpm_attention_forward)

from ipex_llm.transformers.models.minicpm import minicpm_model_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
Expand All @@ -1682,9 +1696,7 @@ def safe_bmm_fwd(*args, **kwargs):
convert_forward(model,
module.MiniCPMRMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MiniCPMAttention,
minicpm_attention_forward)

convert_forward(model,
module.MiniCPMModel,
minicpm_model_forward)
Expand Down
300 changes: 300 additions & 0 deletions python/llm/src/ipex_llm/transformers/models/minicpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@ def minicpm_attention_forward(
)



def minicpm_attention_forward_original(
self,
hidden_states: torch.Tensor,
Expand Down Expand Up @@ -767,3 +768,302 @@ def minicpm_model_forward_internal(
hidden_states=all_hidden_states,
attentions=all_self_attns,
)

def minicpm_attention_forward_original_4_39(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[List[torch.FloatTensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
"Please make sure use `attention_mask` instead.`"
)

bsz, q_len, hidden_size = hidden_states.size()
device = hidden_states.device
# for flash attention
original_dtype = hidden_states.dtype

use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
no_tp = not self.config.pretraining_tp > 1
decoding_fast_path = use_decoding_fast_path(self.q_proj,
use_fuse_rope,
enough_kv_room,
bsz * q_len,
llama_decoding_fast_path_qtype_check) and no_tp

# single batch decoding fast path
# forward_qkv takes will perform QKV projection, rotary position embedding
# and save the key/value states to cache, then return query states and the
# extended key/value cache
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]
kv_seq_len = cache_k.shape[-2]
import xe_linear
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
self.v_proj.weight.qtype,
kv_seq_len,
self.head_dim,
self.rotary_emb.base,)
kv_seq_len += 1
# update past_key_value's seem_tokens and kv caches.
if self.layer_idx == 0:
past_key_value._seen_tokens = kv_seq_len
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states

else:
if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
// self.config.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)

key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)

value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
hidden_size == 4096 and self.q_proj.out_features == self.k_proj.out_features:
# only use mm_qkv_out on pvc for llama-7b
if not hasattr(self, "qkv_proj_weight"):
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight]).contiguous()
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
torch.xpu.empty_cache()
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
dtype=hidden_states.dtype, device=hidden_states.device)
torch.ops.torch_ipex.mm_qkv_out(
hidden_states, self.qkv_proj_weight, None,
query_states, key_states, value_states
)
else:
if should_use_xetla_mm_qkv(self, device):
if not hasattr(self, "qkv_proj_qweight"):
self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
self.k_proj,
self.v_proj,
self.q_proj.weight.qtype,)
import xe_linear
q_out_len = self.q_proj.out_len
k_out_len = self.k_proj.out_len
v_out_len = self.v_proj.out_len
qkv_states = xe_linear.mm_xetla(hidden_states,
self.qkv_proj_qweight,
self.q_proj.weight.qtype)
query_states = qkv_states[:, :, :q_out_len]
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
value_states = qkv_states[:, :, q_out_len + k_out_len:]
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)

query_states = query_states.view(bsz, q_len,
self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
invalidInputError(False,
"The cache structure has changed since version v4.36. "
f"If you are using {self.__class__.__name__} for "
"auto-regressive decodingwith k/v caching, please make sure "
"to initialize the attention class with a layer index.")
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

if use_fuse_rope:
import xe_addons
xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids,
query_states, key_states)
else:
if cache_position is not None:
# for transformers 4.38.0
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama2")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")

if past_key_value is not None:
# update the number of seen tokens
if self.layer_idx == 0:
past_key_value._seen_tokens += key_states.shape[-2]

# reuse k, v, self_attention
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
if len(past_key_value.key_cache) <= self.layer_idx:
past_key_value.key_cache.append(key_states)
past_key_value.value_cache.append(value_states)
else:
cache_k = past_key_value.key_cache[self.layer_idx]
cache_v = past_key_value.value_cache[self.layer_idx]

if not enough_kv_room:
# allocate new
new_c_k, new_c_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)

new_c_k[:] = cache_k
new_c_v[:] = cache_v
cache_k = new_c_k
cache_v = new_c_v

key_states, value_states = append_kv_cache(cache_k,
cache_v,
key_states,
value_states)

# update past_key_value
past_key_value.key_cache[self.layer_idx] = key_states
past_key_value.value_cache[self.layer_idx] = value_states

if cache_position is not None:
new_attention_mask = attention_mask[:, :, kv_seq_len - q_len:kv_seq_len, 0:kv_seq_len]
else:
new_attention_mask = attention_mask

if not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, new_attention_mask):
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# now only use flash attention for first token
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True)
attn_weights = None
elif not self.training and not hidden_states.requires_grad and \
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
import xe_addons
attn_output = xe_addons.sdp(query_states, key_states, value_states,
new_attention_mask)
attn_output = attn_output.view(query_states.shape)
attn_weights = None
else:
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# otherwise, use native attention
if query_states.device.type == "xpu":
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
new_attention_mask, cache_position,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads, output_attentions)
else:
# CPU path
if not output_attentions:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=new_attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with
# AttentionMaskConverter.to_causal_4d that
# does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and new_attention_mask is None and q_len > 1,
)
else:
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
new_attention_mask, cache_position,
bsz, q_len, kv_seq_len,
self.head_dim,
self.num_heads, output_attentions)

attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output.to(original_dtype), attn_weights, past_key_value


def minicpm_attention_forward_4_39(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[List[torch.FloatTensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
if use_quantize_kv_cache(self.q_proj, hidden_states):
forward_function = minicpm_attention_forward_quantized
else:
forward_function = minicpm_attention_forward_original_4_39
return forward_function(
self=self,
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
kwargs=kwargs
)

0 comments on commit 3565e5b

Please sign in to comment.