Skip to content

Commit

Permalink
support running internlm xcomposer2 on gpu and add sdp optimization (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored May 23, 2024
1 parent c5e8b90 commit 37b98a5
Show file tree
Hide file tree
Showing 2 changed files with 106 additions and 17 deletions.
4 changes: 3 additions & 1 deletion python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,11 +44,11 @@
import importlib.util
from ipex_llm.ggml.quantize import ggml_tensor_qtype, gguf_mixed_qtype
from .utils import logger, get_cur_qtype_and_imatrix
from typing import Union
import numpy as np
import os
from ipex_llm.utils.common import invalidInputError
from typing import List, Optional, Tuple, Union
from types import MethodType
import subprocess
import sys

Expand Down Expand Up @@ -1228,6 +1228,8 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model, module.InternLM2Attention, internlm_xcomposser2_attention_forward)
from ipex_llm.transformers.models.internlm import internlm_xcomposser2_mlp_forward
convert_forward(model, module.InternLM2MLP, internlm_xcomposser2_mlp_forward)
from ipex_llm.transformers.models.internlm import internlm_xcomposser2_chat
model.chat = MethodType(internlm_xcomposser2_chat, model)
elif model.config.model_type == "qwen":
if hasattr(model.config, "visual"):
# for Qwen-VL-Chat
Expand Down
119 changes: 103 additions & 16 deletions python/llm/src/ipex_llm/transformers/models/internlm.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
# limitations under the License.
""" PyTorch InternLM model."""
import math
from typing import Optional, Tuple
from typing import Optional, Tuple, List

import torch
import torch.utils.checkpoint
Expand All @@ -47,9 +47,13 @@
append_kv_cache, is_enough_kv_cache_room_4_31
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from einops import rearrange
import os


KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))


Expand Down Expand Up @@ -347,6 +351,7 @@ def internlm_xcomposser2_attention_forward(
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device

qkv_states = self.wqkv(hidden_states)
qkv_states = add_lora(hidden_states, qkv_states, im_mask, self.wqkv_lora_scaling,
Expand Down Expand Up @@ -375,26 +380,45 @@ def internlm_xcomposser2_attention_forward(
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids, "internlm")

if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)

# IPEX-LLM OPT: kv cache and quantzie kv cache
use_quantize_kv = use_quantize_kv_cache(self.wqkv, hidden_states)
key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, use_quantize_kv, device
)
past_key_value = (key_states, value_states) if use_cache else None

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# IPEX-LLM OPT: sdp
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import linear_q4_0
if use_quantize_kv:
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = linear_q4_0.sdp(query_states, key_states, value_states, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import linear_q4_0
if use_quantize_kv:
attn_output = linear_q4_0.sdp_fp8_causal(query_states, key_states, value_states)
else:
attn_output = linear_q4_0.sdp_causal(query_states, key_states, value_states)
else:
if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states, key_states.transpose(
2, 3)) / math.sqrt(self.head_dim)
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if attention_mask is not None:
attn_weights = attn_weights + attention_mask

# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
Expand Down Expand Up @@ -423,3 +447,66 @@ def internlm_xcomposser2_mlp_forward(
w2 = self.w2(x)
w2 = add_lora(x, w2, im_mask, self.w2_lora_scaling, self.w2_Plora_A, self.w2_Plora_B)
return w2


@torch.no_grad()
def internlm_xcomposser2_chat(
self,
tokenizer,
query: str,
image: torch.Tensor = None,
history: List[Tuple[str, str]]=[],
streamer=None,
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 1.0,
top_p: float = 0.8,
repetition_penalty: float=1.005,
meta_instruction:
str = ('You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n'
'- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model'
'that is developed by Shanghai AI Laboratory (上海人工智能实验室).'
'It is designed to be helpful, honest, and harmless.\n'
'- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the'
'language chosen by the user such as English and 中文.\n'
'- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating'
'responses effectively based on the provided image.'),
**kwargs,
):
if image is None:
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
im_mask = torch.zeros(inputs['input_ids'].shape[:2]).bool()
else:
image = self.encode_img(image)
inputs, im_mask = self.interleav_wrap_chat(tokenizer, query, image,
history, meta_instruction)
inputs = {
k: v.to(self.device)
for k, v in inputs.items() if torch.is_tensor(v)
}
im_mask = im_mask.to(self.device)
# also add end-of-assistant token in eos token id to avoid unnecessary generation
eos_token_id = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids(['[UNUSED_TOKEN_145]'])[0]
]
outputs = self.generate(
**inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
eos_token_id=eos_token_id,
repetition_penalty=repetition_penalty,
im_mask=im_mask,
**kwargs,
)
if image is None:
outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
else:
outputs = outputs[0].cpu().tolist()
response = tokenizer.decode(outputs, skip_special_tokens=True)
response = response.split('[UNUSED_TOKEN_145]')[0]
history = history + [(query, response)]
return response, history

0 comments on commit 37b98a5

Please sign in to comment.