Skip to content

Commit

Permalink
add llama3.2-vision Pytorch example (#12165)
Browse files Browse the repository at this point in the history
  • Loading branch information
lzivan authored Oct 9, 2024
1 parent e2ef9e9 commit 3d044db
Show file tree
Hide file tree
Showing 2 changed files with 211 additions and 0 deletions.
134 changes: 134 additions & 0 deletions python/llm/example/GPU/PyTorch-Models/Model/llama3.2-vision/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
# Llama3.2-Vision
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Llama3.2-Vision models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) as a reference Llama3.2-Vision model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama3.2-Vision model to predict the next N tokens using `generate()` API, with IPEX-LLM 'optimize_model' API on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>
<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2-Vision model (e.g. `meta-llama/Llama-3.2-11B-Vision-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-3.2-11B-Vision-Instruct'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe image in detail'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

#### Sample Output
#### [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct)

```log
Inference time: xxxx s
-------------------- Prompt --------------------
Describe image in detail
-------------------- Output --------------------
This image features a charming anthropomorphic rabbit standing on a dirt path, surrounded by a picturesque rural landscape.
The rabbit, with its light brown fur and distinctive large
```

The sample input image is:

<a href="https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"><img width=400px src="https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" ></a>
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import os

import requests
import time
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor

from ipex_llm import optimize_model

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama3.2-Vision model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-3.2-11B-Vision-Instruct",
help='The huggingface repo id for the Llama3.2-Vision model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="Describe image in detail",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
prompt = args.prompt

model = MllamaForConditionalGeneration.from_pretrained(model_path)
model = optimize_model(model, modules_to_not_convert=["multi_modal_projector"])
model = model.half().eval()
model = model.to('xpu')

processor = AutoProcessor.from_pretrained(model_path)

messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)

if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)

inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)

with torch.inference_mode():
for i in range(3):
st = time.time()
output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict)
et = time.time()
print(et - st)
print(processor.decode(output[0]))

0 comments on commit 3d044db

Please sign in to comment.