Skip to content

Commit

Permalink
Support PP inference for chatglm3 (#11375)
Browse files Browse the repository at this point in the history
  • Loading branch information
plusbang authored Jun 21, 2024
1 parent 9a3a21e commit 4ba8219
Show file tree
Hide file tree
Showing 5 changed files with 118 additions and 26 deletions.
16 changes: 16 additions & 0 deletions python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir
- [Qwen/Qwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-14B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh)
- [THUDM/chatglm3-6b](./run_chatglm_arc_2_card.sh)
- [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh)
- [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh)
- [microsoft/Phi-3-mini-4k-instruct](./run_phi3_arc_2_card.sh)
Expand Down Expand Up @@ -71,6 +72,21 @@ bash run_qwen1.5_arc_2_card.sh

</details>

<details>
<summary> Show chatglm example </summary>

#### Run chatglm3-6B on two Intel Arc A770

You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for chatglm to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.

```bash
bash run_chatglm_arc_2_card.sh
```

</details>

</details>

<details>
<summary> Show Baichuan2 example </summary>

Expand Down
24 changes: 16 additions & 8 deletions python/llm/example/GPU/Pipeline-Parallel-Inference/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import time
import argparse

from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel
from ipex_llm.transformers import AutoModel, AutoModelForCausalLM, init_pipeline_parallel
from transformers import AutoTokenizer

init_pipeline_parallel()
Expand All @@ -41,13 +41,21 @@

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float16,
pipeline_parallel_stages=args.gpu_num)
try:
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float16,
pipeline_parallel_stages=args.gpu_num)
except:
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
pipeline_parallel_stages=args.gpu_num)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

source /opt/intel/oneapi/setvars.sh
export MASTER_ADDR=127.0.0.1
export MASTER_PORT=9090
export FI_PROVIDER=tcp
export USE_XETLA=OFF
export OMP_NUM_THREADS=6
if [[ $KERNEL_VERSION != *"6.5"* ]]; then
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
fi
export TORCH_LLM_ALLREDUCE=0

NUM_GPUS=2 # number of used GPU
# To run chatglm3-6b
CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
generate.py --repo-id-or-model-path 'THUDM/chatglm3-6b' --gpu-num $NUM_GPUS
6 changes: 4 additions & 2 deletions python/llm/src/ipex_llm/transformers/models/chatglm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,10 +74,12 @@ def chatglm2_model_forward(
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

batch_size, seq_length = input_ids.shape

if inputs_embeds is None:
batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
else:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
seq_length, batch_size, _ = inputs_embeds.shape

if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
Expand Down
67 changes: 51 additions & 16 deletions python/llm/src/ipex_llm/transformers/pipeline_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,19 @@ def forward(self, hidden_states, past_key_value=None, use_cache=False, **kwargs)
return outputs


class Dummy_GLMBlock(nn.Module):
def __init__(self, *args):
super().__init__()
# to avoid AttributeError
self.input_layernorm = DummyLayer()
self.mlp = Dummy_MLPLayer()

def forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
):
return hidden_states, kv_cache


def init_pipeline_parallel():
import oneccl_bindings_for_pytorch
os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "127.0.0.1")
Expand All @@ -79,28 +92,49 @@ def init_pipeline_parallel():


def pipeline_parallel(model, pipeline_parallel_stages):
slice_size = (model.config.num_hidden_layers + pipeline_parallel_stages - 1) // \
pipeline_parallel_stages
global num_layers
if hasattr(model.config, 'num_hidden_layers'):
num_layers = model.config.num_hidden_layers
elif hasattr(model.config, 'num_layers'):
# for chatglm3-6b
num_layers = model.config.num_layers

slice_size = (num_layers + pipeline_parallel_stages - 1) // pipeline_parallel_stages

local_rank = dist.get_rank()

global layer_start
global layer_end
layer_start = slice_size * local_rank
layer_end = layer_start + min(slice_size, model.config.num_hidden_layers - layer_start)

for i in range(model.config.num_hidden_layers):
if i < layer_start or i >= layer_end:
model._modules['model'].layers[i] = Dummy_DecoderLayer()
else:
# align layer_idx and len(past_key_values), otherwise abnormal output
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start

if local_rank != 0:
model._modules['model'].embed_tokens = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['model'].norm = DummyLayer()
model._modules['lm_head'] = DummyLayer()
layer_end = layer_start + min(slice_size, num_layers - layer_start)

if model.config.architectures is not None \
and model.config.architectures[0] in ["ChatGLMModel", "ChatGLMForConditionalGeneration"]:
# for chatglm3-6b
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['transformer'].encoder.layers[i] = Dummy_GLMBlock()
else:
model._modules['transformer'].encoder.layers[i].self_attention.num_layers = \
i - layer_start

if local_rank != 0:
model._modules['transformer'].embedding = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['transformer'].encoder.final_layernorm = DummyLayer()
model._modules['transformer'].output_layer = DummyLayer()
else:
for i in range(num_layers):
if i < layer_start or i >= layer_end:
model._modules['model'].layers[i] = Dummy_DecoderLayer()
else:
model._modules['model'].layers[i].self_attn.layer_idx = i - layer_start

if local_rank != 0:
model._modules['model'].embed_tokens = DummyLayer()
if local_rank != pipeline_parallel_stages - 1:
model._modules['model'].norm = DummyLayer()
model._modules['lm_head'] = DummyLayer()

model.pipeline_parallel_stages = pipeline_parallel_stages
model = model.to(f'xpu:{local_rank}')
Expand Down Expand Up @@ -176,6 +210,7 @@ def pipeline_parallel_generate(self,

global layer_start
global layer_end
global num_layers

self.first_token_time = 0
self.next_token_time = []
Expand Down

0 comments on commit 4ba8219

Please sign in to comment.