-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add basic support for llama3.2 (#12125)
- Loading branch information
1 parent
66f419f
commit 584c348
Showing
3 changed files
with
271 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Some parts of this file is adapted from | ||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py | ||
# which is licensed under Apache License 2.0: | ||
# | ||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import torch | ||
|
||
from typing import Optional, Tuple, Union | ||
from transformers.cache_utils import Cache | ||
from transformers.modeling_outputs import BaseModelOutputWithPast | ||
from transformers.models.llama.modeling_llama import repeat_kv | ||
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb | ||
|
||
from ipex_llm.utils.common import invalidInputError | ||
from ipex_llm.transformers.models.common import attention_softmax | ||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal | ||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache | ||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache | ||
|
||
|
||
def llama_model_forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[Cache] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
) -> Union[Tuple, BaseModelOutputWithPast]: | ||
output_attentions = ( | ||
output_attentions if output_attentions is not None | ||
else self.config.output_attentions | ||
) | ||
output_hidden_states = ( | ||
output_hidden_states if output_hidden_states is not None | ||
else self.config.output_hidden_states | ||
) | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
|
||
# IPEX-LLM OPT start: kv cache and quantize kv cache | ||
inputs = input_ids if input_ids is not None else inputs_embeds | ||
use_cache = True if inputs.device.type == "xpu" else use_cache | ||
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs) | ||
if use_cache: | ||
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): | ||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) | ||
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): | ||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) | ||
# IPEX-LLM OPT end | ||
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
invalidInputError((input_ids is None) ^ (inputs_embeds is None), | ||
"You cannot specify both input_ids and inputs_embeds at the same time, " | ||
"and must specify either one") | ||
|
||
if inputs_embeds is None: | ||
inputs_embeds = self.embed_tokens(input_ids) | ||
|
||
if cache_position is None: | ||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | ||
cache_position = torch.arange( | ||
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | ||
) | ||
if position_ids is None: | ||
position_ids = cache_position.unsqueeze(0) | ||
|
||
causal_mask = self._update_causal_mask( | ||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | ||
) | ||
hidden_states = inputs_embeds | ||
|
||
# create position embeddings to be shared across the decoder layers | ||
position_embeddings = self.rotary_emb(hidden_states, position_ids) | ||
|
||
# decoder layers | ||
all_hidden_states = () if output_hidden_states else None | ||
all_self_attns = () if output_attentions else None | ||
next_decoder_cache = None | ||
|
||
for decoder_layer in self.layers: | ||
if output_hidden_states: | ||
all_hidden_states += (hidden_states,) | ||
|
||
layer_outputs = decoder_layer( | ||
hidden_states, | ||
attention_mask=causal_mask, | ||
position_ids=position_ids, | ||
past_key_value=past_key_values, | ||
output_attentions=output_attentions, | ||
use_cache=use_cache, | ||
cache_position=cache_position, | ||
position_embeddings=position_embeddings, | ||
) | ||
|
||
hidden_states = layer_outputs[0] | ||
|
||
if use_cache: | ||
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | ||
|
||
if output_attentions: | ||
all_self_attns += (layer_outputs[1],) | ||
|
||
hidden_states = self.norm(hidden_states) | ||
|
||
# add hidden states from the last decoder layer | ||
if output_hidden_states: | ||
all_hidden_states += (hidden_states,) | ||
|
||
next_cache = next_decoder_cache if use_cache else None | ||
|
||
if not return_dict: | ||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | ||
if v is not None) | ||
return BaseModelOutputWithPast( | ||
last_hidden_state=hidden_states, | ||
past_key_values=next_cache, | ||
hidden_states=all_hidden_states, | ||
attentions=all_self_attns, | ||
) | ||
|
||
|
||
def llama_attention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_value: Optional[Cache] = None, | ||
output_attentions: bool = False, | ||
use_cache: bool = False, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, | ||
**kwargs, | ||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | ||
bsz, q_len, _ = hidden_states.size() | ||
|
||
qkv = self.qkv_proj(hidden_states) | ||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | ||
qkv = qkv.transpose(1, 2) | ||
query_states, key_states, value_states = qkv.split([self.num_heads, | ||
self.num_key_value_heads, | ||
self.num_key_value_heads], dim=1) | ||
|
||
if position_embeddings is None: | ||
cos, sin = self.rotary_emb(value_states, position_ids) | ||
else: | ||
cos, sin = position_embeddings | ||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | ||
|
||
if past_key_value is not None: | ||
key_states, value_states = past_key_value.update(key_states, value_states, | ||
self.layer_idx, None) | ||
|
||
kv_seq_len = key_states.size(2) | ||
if attention_mask is not None: # no matter the length, we just slice it | ||
causal_mask = attention_mask[:, :, :, :kv_seq_len] | ||
|
||
attn_weights = None | ||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): | ||
import xe_addons | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask) | ||
else: | ||
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask) | ||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): | ||
import xe_addons | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, | ||
value_states, causal_mask) | ||
else: | ||
attn_output = xe_addons.sdp_causal(query_states, key_states, | ||
value_states, causal_mask) | ||
else: | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, | ||
query_states.dtype) | ||
# repeat k/v heads if n_kv_heads < n_heads | ||
key_states = repeat_kv(key_states, self.num_key_value_groups) | ||
value_states = repeat_kv(value_states, self.num_key_value_groups) | ||
|
||
attn_weights = torch.matmul(query_states, | ||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | ||
|
||
if causal_mask is not None: | ||
attn_weights = attn_weights + causal_mask | ||
|
||
# upcast attention to fp32 | ||
attn_weights = attention_softmax(attn_weights, self.training) | ||
attn_output = torch.matmul(attn_weights, value_states) | ||
|
||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
attn_output = attn_output.reshape(bsz, q_len, -1) | ||
attn_output = self.o_proj(attn_output) | ||
|
||
if not output_attentions: | ||
attn_weights = None | ||
|
||
return attn_output, attn_weights, past_key_value |