Skip to content

Commit

Permalink
add basic support for llama3.2 (#12125)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Sep 26, 2024
1 parent 66f419f commit 584c348
Show file tree
Hide file tree
Showing 3 changed files with 271 additions and 2 deletions.
14 changes: 13 additions & 1 deletion python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1267,7 +1267,19 @@ def _optimize_post(model, lightweight_bmm=False):
from ipex_llm.transformers.models.llama import llama_rms_norm_forward
from ipex_llm.transformers.models.llama import llama_mlp_forward

if model.config.model_type == "llama":
if model.config.model_type == "llama" and model.config.rope_scaling is not None:
# llama 3.2
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.common import rms_norm_forward
from ipex_llm.transformers.models.common import mlp_silu_forward
from ipex_llm.transformers.models.llama32 import llama_model_forward
from ipex_llm.transformers.models.llama32 import llama_attention_forward
convert_forward(model, module.LlamaRMSNorm, rms_norm_forward)
convert_forward(model, module.LlamaMLP, mlp_silu_forward)
convert_forward(model, module.LlamaModel, llama_model_forward)
convert_forward(model, module.LlamaAttention, llama_attention_forward)
elif model.config.model_type == "llama":
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.models.llama.modeling_llama import LlamaMLP
from transformers.models.llama.modeling_llama import LlamaAttention
Expand Down
23 changes: 22 additions & 1 deletion python/llm/src/ipex_llm/transformers/kv.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,19 +24,26 @@
init_fp8_kv_cache, append_fp8_kv_cache,
init_kv_cache, append_kv_cache, extend_kv_cache
)
from typing import Optional, Dict, Tuple, Any
from typing import Optional, Dict, Tuple, Any, List
from transformers.cache_utils import DynamicCache
from ipex_llm.utils.common.log4Error import invalidInputError


class DynamicFp8Cache(DynamicCache):
def __init__(self, num_hidden_layers: Optional[int] = None) -> None:
# ignore num_hidden_layers to fix transformers >= 4.45
super().__init__()

def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# fix converting empty DynamicCache in transformers >= 4.45
if key_states == []:
return key_states, value_states

batch_size, num_heads, seq_len, head_dim = key_states.shape

Expand Down Expand Up @@ -71,13 +78,20 @@ def update(
class DynamicNormalCache(DynamicCache):
KV_ALLOC_BLOCK_LENGTH = 256

def __init__(self, num_hidden_layers: Optional[int] = None) -> None:
# ignore num_hidden_layers to fix transformers >= 4.45
super().__init__()

def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# fix converting empty DynamicCache in transformers >= 4.45
if key_states == []:
return key_states, value_states

batch_size, num_heads, seq_len, head_dim = key_states.shape

Expand Down Expand Up @@ -257,6 +271,9 @@ def update(
KV_CACHE_ALLOC_BLOCK_LENGTH: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# fix converting empty DynamicCache in transformers >= 4.45
if key_states == []:
return key_states, value_states

bsz, num_heads, seq_len, head_dim = key_states.shape

Expand Down Expand Up @@ -354,6 +371,10 @@ def update(
KV_CACHE_ALLOC_BLOCK_LENGTH: int,
cache_kwargs: Optional[Dict[str, Any]]=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# fix converting empty DynamicCache in transformers >= 4.45
if key_states == []:
return key_states, value_states

bsz, num_heads, seq_len, head_dim = key_states.shape

if layer_idx == 0:
Expand Down
236 changes: 236 additions & 0 deletions python/llm/src/ipex_llm/transformers/models/llama32.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch

from typing import Optional, Tuple, Union
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import repeat_kv
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb

from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache


def llama_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache

# IPEX-LLM OPT start: kv cache and quantize kv cache
inputs = input_ids if input_ids is not None else inputs_embeds
use_cache = True if inputs.device.type == "xpu" else use_cache
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs)
if use_cache:
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
# IPEX-LLM OPT end

return_dict = return_dict if return_dict is not None else self.config.use_return_dict

invalidInputError((input_ids is None) ^ (inputs_embeds is None),
"You cannot specify both input_ids and inputs_embeds at the same time, "
"and must specify either one")

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds

# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None

for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)

layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)

hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]

if output_attentions:
all_self_attns += (layer_outputs[1],)

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

next_cache = next_decoder_cache if use_cache else None

if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)


def llama_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)

if position_embeddings is None:
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

kv_seq_len = key_states.size(2)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :kv_seq_len]

attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, causal_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, causal_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if causal_mask is not None:
attn_weights = attn_weights + causal_mask

# upcast attention to fp32
attn_weights = attention_softmax(attn_weights, self.training)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output, attn_weights, past_key_value

0 comments on commit 584c348

Please sign in to comment.