Skip to content

Commit

Permalink
generate.py and README updates
Browse files Browse the repository at this point in the history
  • Loading branch information
Oscilloscope98 committed Dec 16, 2024
1 parent 6b9d694 commit 6db1772
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 25 deletions.
41 changes: 30 additions & 11 deletions python/llm/example/GPU/HuggingFace/LLM/glm-edge/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# GLM-Edge
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-Edge models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-edge-1.5b-chat](https://hf-mirror.com/THUDM/glm-edge-1.5b-chat) as a reference InternLM model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-Edge models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-edge-1.5b-chat](https://hf-mirror.com/THUDM/glm-edge-1.5b-chat) and [THUDM/glm-edge-4b-chat](https://hf-mirror.com/THUDM/glm-edge-4b-chat) as reference GLM-Edge models.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -14,8 +14,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# install packages required for GLM-Edge
pip install git+https://github.com/huggingface/transformers.git
pip install "tiktoken>=0.7.0" "trl<0.12.0"
pip install transformers==4.47.0
pip install accelerate==0.33.0
pip install "trl<0.12.0"
```

### 1.2 Installation on Windows
Expand All @@ -28,8 +29,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# install packages required for GLM-Edge
pip install git+https://github.com/huggingface/transformers.git
pip install "tiktoken>=0.7.0" "trl<0.12.0"
pip install transformers==4.47.0
pip install accelerate==0.33.0
pip install "trl<0.12.0"
```

## 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -98,14 +100,14 @@ set SYCL_CACHE_PERSISTENT=1
## 4. Running examples

### Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
In the example [generate.py](./generate.py), we show a basic use case for a GLM-Edge model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.

```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4 model (e.g. `THUDM/glm-edge-1.5b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-edge-1.5b-chat'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-Edge model (e.g. `THUDM/glm-edge-1.5b-chat` or `THUDM/glm-edge-4b-chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-edge-4b-chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

Expand All @@ -114,15 +116,32 @@ Arguments info:
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
AI是什么?
<|assistant|>
-------------------- Output --------------------
AI,即人工智能,指的是由人制造出来的系统或机器能够执行通常需要人类智能才能完成的任务。人工智能可以执行多种任务,包括视觉识别、语言
```

AI是什么?
```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial Intelligence, often abbreviated as AI, refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic
```

AI,即人工智能,指的是由人制造出来的系统或机器能够执行通常需要人类智能才能完成的任务。人工智能可以执行多种任务,包括视觉识别、语言
#### [THUDM/glm-edge-4b-chat](https://hf-mirror.com/THUDM/glm-edge-4b-chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI,即人工智能(Artificial Intelligence),是计算机科学的一个分支,旨在开发出一种智能系统,使其能够执行通常需要人类智能才能完成的任务,如视觉
```

```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
Artificial intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. AI systems can
```
24 changes: 10 additions & 14 deletions python/llm/example/GPU/HuggingFace/LLM/glm-edge/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,18 +17,14 @@
import torch
import time
import argparse
import numpy as np

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://hf-mirror.com/THUDM/glm-edge-1.5b-chat


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for GLM-Edge model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-edge-1.5b-chat",
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-edge-4b-chat",
help='The huggingface repo id for the GLM-Edge model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
Expand All @@ -44,26 +40,27 @@
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.to("xpu")
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
model = model.half().to("xpu")

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/THUDM/glm-edge-1.5b-chat#inference
message = [{"role": "user", "content": args.prompt}]

inputs = tokenizer.apply_chat_template(
message,
return_tensors="pt",
add_generation_prompt=True,
return_dict=True,
).to(model.device)
).to("xpu")

generate_kwargs = {
"input_ids": inputs["input_ids"],
Expand All @@ -76,12 +73,11 @@
output = model.generate(**generate_kwargs)

st = time.time()

output = model.generate(**generate_kwargs)

torch.xpu.synchronize()
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)

output_str = tokenizer.decode(output[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(args.prompt)
Expand Down

0 comments on commit 6db1772

Please sign in to comment.