-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LLM: add save/load example for hf-transformers (#10432)
- Loading branch information
1 parent
46e8052
commit 6db3b82
Showing
3 changed files
with
212 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
130 changes: 130 additions & 0 deletions
130
python/llm/example/GPU/HF-Transformers-AutoModels/Save-Load/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# Save/Load Low-Bit Models with BigDL-LLM Optimizations | ||
|
||
In this directory, you will find example on how you could save/load models with BigDL-LLM INT4 optimizations on Llama2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models. | ||
|
||
## 0. Requirements | ||
To run this example with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../README.md#system-support) for more information. | ||
|
||
## Example: Save/Load Model in Low-Bit Optimization | ||
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API. Also, saving and loading operations are platform-independent, so you could run it on different platforms. | ||
### 1. Install | ||
#### 1.1 Installation on Linux | ||
We suggest using conda to manage environment: | ||
```bash | ||
conda create -n llm python=3.9 | ||
conda activate llm | ||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu | ||
``` | ||
|
||
#### 1.2 Installation on Windows | ||
We suggest using conda to manage environment: | ||
```bash | ||
conda create -n llm python=3.9 libuv | ||
conda activate llm | ||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default | ||
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu | ||
``` | ||
|
||
### 2. Configures OneAPI environment variables | ||
#### 2.1 Configurations for Linux | ||
```bash | ||
source /opt/intel/oneapi/setvars.sh | ||
``` | ||
|
||
#### 2.2 Configurations for Windows | ||
```cmd | ||
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" | ||
``` | ||
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. | ||
|
||
### 3. Run | ||
#### 3.1 Configurations for Linux | ||
<details> | ||
|
||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary> | ||
|
||
```bash | ||
export USE_XETLA=OFF | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Data Center GPU Max Series</summary> | ||
|
||
```bash | ||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so | ||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 | ||
export ENABLE_SDP_FUSION=1 | ||
``` | ||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. | ||
</details> | ||
#### 3.2 Configurations for Windows | ||
<details> | ||
|
||
<summary>For Intel iGPU</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
set BIGDL_LLM_XMX_DISABLED=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For Intel Arc™ A300-Series or Pro A60</summary> | ||
|
||
```cmd | ||
set SYCL_CACHE_PERSISTENT=1 | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
|
||
<summary>For other Intel dGPU Series</summary> | ||
|
||
There is no need to set further environment variables. | ||
|
||
</details> | ||
|
||
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. | ||
### 4. Running examples | ||
|
||
If you want to save the optimized low-bit model, run: | ||
``` | ||
python ./generate.py --save-path path/to/save/model | ||
``` | ||
|
||
If you want to load the optimized low-bit model, run: | ||
``` | ||
python ./generate.py --load-path path/to/load/model | ||
``` | ||
|
||
In the example, several arguments can be passed to satisfy your requirements: | ||
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`. | ||
- `--save-path`: argument defining the path to save the low-bit model. Then you can load the low-bit directly. | ||
- `--load-path`: argument defining the path to load low-bit model. | ||
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`. | ||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. | ||
|
||
#### Sample Output | ||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | ||
```log | ||
Inference time: xxxx s | ||
-------------------- Output -------------------- | ||
### HUMAN: | ||
What is AI? | ||
### RESPONSE: | ||
AI is a term used to describe the development of computer systems that can perform tasks that typically require human intelligence, such as understanding natural language, recognizing images | ||
``` |
82 changes: 82 additions & 0 deletions
82
python/llm/example/GPU/HF-Transformers-AutoModels/Save-Load/generate.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import torch | ||
import time | ||
import argparse | ||
from bigdl.llm.transformers import AutoModelForCausalLM | ||
from transformers import LlamaTokenizer | ||
|
||
# you could tune the prompt based on your own model, | ||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style | ||
LLAMA2_PROMPT_FORMAT = """### HUMAN: | ||
{prompt} | ||
### RESPONSE: | ||
""" | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", | ||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--save-path', type=str, default=None, | ||
help='The path to save the low-bit model.') | ||
parser.add_argument('--load-path', type=str, default=None, | ||
help='The path to load the low-bit model.') | ||
parser.add_argument('--prompt', type=str, default="What is AI?", | ||
help='Prompt to infer') | ||
parser.add_argument('--n-predict', type=int, default=32, | ||
help='Max tokens to predict') | ||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
load_path = args.load_path | ||
if load_path: | ||
model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True) | ||
tokenizer = LlamaTokenizer.from_pretrained(load_path) | ||
else: | ||
model = AutoModelForCausalLM.from_pretrained(model_path, | ||
load_in_4bit=True, | ||
trust_remote_code=True) | ||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) | ||
|
||
save_path = args.save_path | ||
if save_path: | ||
model.save_low_bit(save_path) | ||
tokenizer.save_pretrained(save_path) | ||
print(f"Model and tokenizer are saved to {save_path}") | ||
|
||
# please save/load model before you run it on GPU | ||
model = model.to('xpu') | ||
|
||
# Generate predicted tokens | ||
with torch.inference_mode(): | ||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) | ||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') | ||
# ipex model needs a warmup, then inference time can be accurate | ||
output = model.generate(input_ids, | ||
max_new_tokens=args.n_predict) | ||
|
||
st = time.time() | ||
output = model.generate(input_ids, | ||
max_new_tokens=args.n_predict) | ||
torch.xpu.synchronize() | ||
end = time.time() | ||
output = output.cpu() | ||
output_str = tokenizer.decode(output[0], skip_special_tokens=True) | ||
print(f'Inference time: {end-st} s') | ||
print('-'*20, 'Output', '-'*20) | ||
print(output_str) |