Skip to content

Commit

Permalink
Add qwen2 example (#11252)
Browse files Browse the repository at this point in the history
* Add GPU example for Qwen2

* Update comments in README

* Update README for Qwen2 GPU example

* Add CPU example for Qwen2

Sample Output under README pending

* Update generate.py and README for CPU Qwen2

* Update GPU example for Qwen2

* Small update

* Small fix

* Add Qwen2 table

* Update README for Qwen2 CPU and GPU

Update sample output under README

---------

Co-authored-by: Zijie Li <[email protected]>
  • Loading branch information
Oscilloscope98 and lzivan authored Jun 7, 2024
1 parent 85df5e7 commit 8c36b5b
Show file tree
Hide file tree
Showing 10 changed files with 788 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| InternLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/internlm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/internlm) |
| Qwen | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen) |
| Qwen1.5 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen1.5) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5) |
| Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwe2) |
| Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen-vl) |
| Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila) |
| Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/aquila2) |
Expand Down
7 changes: 7 additions & 0 deletions docs/readthedocs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -363,6 +363,13 @@ Verified Models
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen1.5">link</a></td>
</tr>
<tr>
<td>Qwen2</td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2">link</a></td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen2">link</a></td>
</tr>
<tr>
<td>Qwen-VL</td>
<td>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Qwen2

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2 models. For illustration purposes, we utilize the [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) as a reference Qwen2 model.

## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:

On Linux:

```bash
conda create -n llm python=3.11
conda activate llm

# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.37.0 # install the transformers which support Qwen2
```

On Windows:

```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.37.0
```

### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2-7B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the Qwen model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```

#### 2.3 Sample Output
##### [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI,即人工智能(Artificial Intelligence),是一种计算机科学领域,旨在开发能够模拟、延伸和增强人类智能的算法和系统。人工 智能涉及许多
```

```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
AI stands for Artificial Intelligence, which is the simulation of human intelligence in machines that are programmed to think and learn like humans and mimic their actions. The term may
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Qwen2-7B-Instruct')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-7B-Instruct",
help='The huggingface repo id for the Qwen2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path


from ipex_llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

prompt = args.prompt

# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-7B-Instruct#quickstart
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt")
st = time.time()
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
end = time.time()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)
84 changes: 84 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/qwen2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Qwen2
In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Qwen2 models. For illustration purposes, we utilize the [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) as reference Qwen2 model.

## Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://conda-forge.org/download/).

After installing conda, create a Python environment for IPEX-LLM:

On Linux:

```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm

# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.37.0 # install transformers which supports Qwen2
```

On Windows:

```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.37.0
```

### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen2 to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen2-7B-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the Qwen model based on the capabilities of your machine.
#### 2.1 Client
On client Windows machines, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py --prompt 'What is AI?'
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
```

#### 2.3 Sample Output
##### [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
AI是什么?
-------------------- Output --------------------
AI,即人工智能(Artificial Intelligence),是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的学科
```

```log
Inference time: xxxx s
-------------------- Prompt --------------------
What is AI?
-------------------- Output --------------------
AI stands for Artificial Intelligence, which refers to the development of computer systems that can perform tasks that typically require human intelligence. These tasks may include learning from experience,
```
82 changes: 82 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/qwen2/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Qwen2-7B-Instruct')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-7B-Instruct",
help='The huggingface repo id for the Qwen2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path


from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True)


# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
from ipex_llm import optimize_model
model = optimize_model(model)

prompt = args.prompt
# Generate predicted tokens
with torch.inference_mode():
# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-7B-Instruct#quickstart
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt")
st = time.time()
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=args.n_predict
)
end = time.time()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)
Loading

0 comments on commit 8c36b5b

Please sign in to comment.