Skip to content

Commit

Permalink
LLM: Add codegeex2 example (#11143)
Browse files Browse the repository at this point in the history
* add codegeex example

* update

* update cpu

* add GPU

* add gpu

* update readme
  • Loading branch information
hzjane authored May 29, 2024
1 parent 751e1a4 commit 8e25de1
Show file tree
Hide file tree
Showing 10 changed files with 750 additions and 0 deletions.
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| StableLM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/stablelm) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/stablelm) |
| CodeGemma | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegemma) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegemma) |
| Command-R/cohere | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere) |
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2) |

## Get Support
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
Expand Down
7 changes: 7 additions & 0 deletions docs/readthedocs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -604,6 +604,13 @@ Verified Models
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/cohere">link</a></td>
</tr>
<tr>
<td>CodeGeeX2</td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2">link</a></td>
<td>
<a href="https://github.com/intel-analytics/ipex-llm/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/codegeex2">link</a></td>
</tr>
</tbody>
</table>

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# CodeGeeX2

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeex2 models which is implemented based on the ChatGLM2 architecture trained on more code data. We utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model.

## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:

On Linux:

```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm

# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```

On Windows:

```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```

### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeex2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex2-6b'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`.

#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init -t

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```

#### 2.3 Sample Output
#### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
# language: Python
# write a bubble sort function
-------------------- Output --------------------
# language: Python
# write a bubble sort function
def bubble_sort(lst):
for i in range(len(lst) - 1):
for j in range(len(lst) - 1 - i):
if lst[j] > lst[j + 1]:
lst[j], lst[j + 1] = lst[j + 1], lst[j]
return lst
print(bubble_sort([1, 2, 3, 4, 5, 6, 7, 8,
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started
CODEGEEX_PROMPT_FORMAT = "{prompt}"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGeeX2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b",
help='The huggingface repo id for the CodeGeeX2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=128,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with IPEX-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
83 changes: 83 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/codegeex2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# CodeGeeX2

In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeex2 models which is implemented based on the ChatGLM2 architecture trained on more code data. We utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model.

## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example 1: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:

On Linux:

```bash
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm

# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
```

On Windows:

```cmd
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
```

### 2. Run
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeex2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex2-6b'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`.

#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./generate.py
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init -t

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py
```

#### 2.3 Sample Output
#### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
# language: Python
# write a bubble sort function
-------------------- Output --------------------
# language: Python
# write a bubble sort function
def bubble_sort(lst):
for i in range(len(lst) - 1):
for j in range(len(lst) - 1 - i):
if lst[j] > lst[j + 1]:
lst[j], lst[j + 1] = lst[j + 1], lst[j]
return lst
print(bubble_sort([1, 2, 3, 4, 5, 6, 7, 8,
```
69 changes: 69 additions & 0 deletions python/llm/example/CPU/PyTorch-Models/Model/codegeex2/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/THUDM/codegeex2-6b#%E5%BF%AB%E9%80%9F%E5%BC%80%E5%A7%8B-%EF%BD%9C-get-started
CODEGEEX_PROMPT_FORMAT = "{prompt}"

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for CodeGeeX2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/codegeex2-6b",
help='The huggingface repo id for the CodeGeeX2 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="# language: Python\n# write a bubble sort function\n",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=128,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = CODEGEEX_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with IPEX-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
Loading

0 comments on commit 8e25de1

Please sign in to comment.