Skip to content

Commit

Permalink
use new fused layer norm (#12553)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Dec 17, 2024
1 parent 680ea7e commit a608f26
Show file tree
Hide file tree
Showing 4 changed files with 38 additions and 41 deletions.
7 changes: 3 additions & 4 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1296,10 +1296,9 @@ def _optimize_post(model, lightweight_bmm=False):
trans_version = transformers.__version__

# convert all nn.LayerNorm
from ipex_llm.transformers.models.bloom import bloom_layer_norm_forward
convert_forward(model,
nn.LayerNorm,
bloom_layer_norm_forward)
from ipex_llm.transformers.models.common import layer_norm_forward
convert_forward(model, nn.LayerNorm, layer_norm_forward)

from ipex_llm.transformers.models.llama import llama_rms_norm_forward
from ipex_llm.transformers.models.llama import llama_mlp_forward

Expand Down
17 changes: 0 additions & 17 deletions python/llm/src/ipex_llm/transformers/models/bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,23 +64,6 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
return out


def bloom_layer_norm_forward(self, hidden_states):
if use_fused_layer_norm(hidden_states, self.training):
import xe_addons
result = xe_addons.fused_layer_norm(hidden_states,
[self.weight.size(0)],
self.weight,
self.bias,
self.eps)
# if nelement == 0, means fused norm failed, go back to python implement.
if result.nelement != 0:
return result
input_dtype = hidden_states.dtype
result = F.layer_norm(hidden_states.to(self.weight.dtype),
self.normalized_shape, self.weight, self.bias, self.eps)
return result.to(input_dtype)


def bloom_attention_forward(
self,
hidden_states: torch.Tensor,
Expand Down
17 changes: 16 additions & 1 deletion python/llm/src/ipex_llm/transformers/models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# limitations under the License.


import math
import torch
from typing import List

Expand Down Expand Up @@ -159,7 +160,7 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
else:
eps = self.epsilon

if hidden_states.device.type == 'xpu':
if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(weight, x_2d, eps)
Expand All @@ -169,3 +170,17 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps)
return weight * hidden_states.to(input_dtype)


def layer_norm_forward(self, hidden_states: torch.Tensor):
if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons
hidden_size = math.prod(self.normalized_shape)
x_2d = hidden_states.reshape(-1, hidden_size).contiguous()
output = xe_addons.layer_norm(x_2d, self.weight, self.bias, self.eps)
return output.reshape(hidden_states.shape)
else:
return torch.nn.functional.layer_norm(
hidden_states, self.normalized_shape,
self.weight, self.bias, self.eps
)
38 changes: 19 additions & 19 deletions python/llm/test/inference_gpu/test_transformers_api_layernorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,39 +13,39 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import pytest
import gc

import torch
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
from transformers import LlamaTokenizer, AutoTokenizer

device = os.environ['DEVICE']
print(f'Running on {device}')

PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
TEST_MODEL_LIST = [
("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
]

class Test_Optimize_Gpu_Model:
def setup_method(self):
self.layer_outputs = []
self.pre_layer_outputs = []

def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound):
with torch.inference_mode():
def pre_forward_hook(module, input, output, layer_name):
self.pre_layer_outputs.append(output)

def forward_hook(module, input, output, layer_name):
self.layer_outputs.append(output)

tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)

model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
Expand All @@ -64,18 +64,18 @@ def forward_hook(module, input, output, layer_name):
# the list `layer_output` has only one element.
layer_tensor = self.layer_outputs.pop()
model.to('cpu')

opt_model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
opt_model = opt_model.to(device)


def replace_forward_hook(module, input, output, layer_name):
output = self.pre_layer_outputs[0]
return output

for layer_name, layer_module in opt_model.named_modules():
if layer_name == layer_before_LayerNorm:
layer_module.register_forward_hook(
Expand All @@ -89,29 +89,29 @@ def replace_forward_hook(module, input, output, layer_name):
# the list `layer_output` has only one element.
opt_layer_tensor = self.layer_outputs[0]
opt_model.to('cpu')


LayerNorm_output_diff = []
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
LayerNorm_output_diff.append(t1 - t2)

max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff]
print(max_diff_tensor)
torch.xpu.empty_cache()
del model
del opt_model
gc.collect()
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)

@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
if Name == "Falcon-7B":
self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)


def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
# currently only compare the output of the last LayerNorm layer.
layer_before_LayerNorm = "transformer.h.30"
LayerNorm_layer = "transformer.h.31.input_layernorm"
lower_bound = 0
lower_bound = 1e-5
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)

0 comments on commit a608f26

Please sign in to comment.