-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9e7230d
commit bf41af6
Showing
2 changed files
with
88 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
88 changes: 88 additions & 0 deletions
88
python/llm/example/GPU/HF-Transformers-AutoModels/Model/qwen-vl/chat.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM | ||
from transformers import AutoTokenizer, LlamaTokenizer | ||
from transformers.generation import GenerationConfig | ||
import torch | ||
import time | ||
import os | ||
import argparse | ||
from bigdl.llm import optimize_model | ||
import intel_extension_for_pytorch as ipex | ||
|
||
torch.manual_seed(1234) | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat", | ||
help='The huggingface repo id for the Qwen-VL model to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') | ||
|
||
current_path = os.path.dirname(os.path.abspath(__file__)) | ||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
|
||
# Load model | ||
# For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization | ||
model = AutoModelForCausalLM.from_pretrained(model_path, | ||
load_in_4bit=True, | ||
trust_remote_code=True, | ||
modules_to_not_convert=['c_fc', 'out_proj']) | ||
model = model.to('xpu') | ||
|
||
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0) | ||
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True) | ||
|
||
# Load tokenizer | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | ||
|
||
# Session ID | ||
session_id = 1 | ||
|
||
while True: | ||
print('-'*20, 'Session %d' % session_id, '-'*20) | ||
image_input = input(f' Please input a picture: ') | ||
if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge | ||
break | ||
|
||
text_input = input(f' Please enter the text: ') | ||
if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge | ||
break | ||
|
||
if session_id == 1: | ||
history = None | ||
|
||
all_input = [{'image': image_input}, {'text': text_input}] | ||
input_list = [_input for _input in all_input if list(_input.values())[0] != ''] | ||
|
||
if len(input_list) == 0: | ||
print("Input list should not be empty. Please try again with valid input.") | ||
continue | ||
|
||
query = tokenizer.from_list_format(input_list) | ||
response, history = model.chat(tokenizer, query = query, history = history) | ||
torch.xpu.synchronize() | ||
|
||
print('-'*10, 'Response', '-'*10) | ||
print(response, '\n') | ||
|
||
image = tokenizer.draw_bbox_on_latest_picture(response, history) | ||
if image is not None: | ||
image.save(os.path.join(current_path, f'Session_{session_id}.png'), ) | ||
|
||
session_id += 1 |