Skip to content

Commit

Permalink
create qwen-vl gpu example.
Browse files Browse the repository at this point in the history
  • Loading branch information
lalalapotter committed Oct 27, 2023
1 parent 9e7230d commit bf41af6
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 0 deletions.
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
from transformers.generation import GenerationConfig
import torch
import time
import os
import argparse
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex

torch.manual_seed(1234)

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat",
help='The huggingface repo id for the Qwen-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict')

current_path = os.path.dirname(os.path.abspath(__file__))
args = parser.parse_args()
model_path = args.repo_id_or_model_path

# Load model
# For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
modules_to_not_convert=['c_fc', 'out_proj'])
model = model.to('xpu')

# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Session ID
session_id = 1

while True:
print('-'*20, 'Session %d' % session_id, '-'*20)
image_input = input(f' Please input a picture: ')
if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break

text_input = input(f' Please enter the text: ')
if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge
break

if session_id == 1:
history = None

all_input = [{'image': image_input}, {'text': text_input}]
input_list = [_input for _input in all_input if list(_input.values())[0] != '']

if len(input_list) == 0:
print("Input list should not be empty. Please try again with valid input.")
continue

query = tokenizer.from_list_format(input_list)
response, history = model.chat(tokenizer, query = query, history = history)
torch.xpu.synchronize()

print('-'*10, 'Response', '-'*10)
print(response, '\n')

image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
image.save(os.path.join(current_path, f'Session_{session_id}.png'), )

session_id += 1

0 comments on commit bf41af6

Please sign in to comment.