-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dbaf4ab
commit d0225d8
Showing
2 changed files
with
219 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# This file is adapted from | ||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm/modeling_glm.py | ||
# | ||
# which is licensed under Apache License 2.0: | ||
# | ||
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved. | ||
# | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import torch | ||
|
||
from typing import Optional, Tuple | ||
from transformers.cache_utils import Cache | ||
from transformers.models.glm.modeling_glm import GlmAttention, GlmMLP | ||
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb | ||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache | ||
from ipex_llm.transformers.models.common import merge_qkv_base | ||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal | ||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache | ||
|
||
|
||
def merge_qkv(module: torch.nn.Module): | ||
merge_qkv_base(module, GlmAttention) | ||
|
||
|
||
def split_mlp(module: torch.nn.Module): | ||
if isinstance(module, GlmMLP): | ||
gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0) | ||
|
||
gate_proj = torch.nn.Linear(0, 0, bias=False) | ||
gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False) | ||
gate_proj.in_features = gate_weight.size(1) | ||
gate_proj.out_features = gate_weight.size(0) | ||
|
||
up_proj = torch.nn.Linear(0, 0, bias=False) | ||
up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False) | ||
up_proj.in_features = up_weight.size(1) | ||
up_proj.out_features = up_weight.size(0) | ||
|
||
module.gate_proj = gate_proj | ||
module.up_proj = up_proj | ||
|
||
del module.gate_up_proj | ||
|
||
# rename activation function | ||
module.act_fn = module.activation_fn | ||
|
||
|
||
def glm_attention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_value: Optional[Cache] = None, | ||
output_attentions: bool = False, | ||
use_cache: bool = False, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, | ||
**kwargs, | ||
): | ||
bsz, q_len, _ = hidden_states.size() | ||
|
||
qkv = self.qkv_proj(hidden_states) | ||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | ||
qkv = qkv.transpose(1, 2) | ||
query_states, key_states, value_states = qkv.split([self.num_heads, | ||
self.num_key_value_heads, | ||
self.num_key_value_heads], dim=1) | ||
|
||
cos, sin = position_embeddings | ||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | ||
|
||
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache) | ||
# sin and cos are specific to RoPE models; cache_position needed for the static cache | ||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | ||
key_states, value_states = past_key_value.update(key_states, value_states, | ||
self.layer_idx, cache_kwargs) | ||
|
||
kv_seq_len = key_states.size(-2) | ||
if attention_mask is not None: # no matter the length, we just slice it | ||
attention_mask = attention_mask[:, :, :, : kv_seq_len] | ||
|
||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): | ||
import xe_addons | ||
if use_quantizekv: | ||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, | ||
attention_mask) | ||
else: | ||
attn_output = xe_addons.sdp(query_states, key_states, value_states, | ||
attention_mask) | ||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): | ||
import xe_addons | ||
if use_quantizekv: | ||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, | ||
value_states, attention_mask) | ||
else: | ||
attn_output = xe_addons.sdp_causal(query_states, key_states, | ||
value_states, attention_mask) | ||
else: | ||
if use_quantizekv: | ||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, | ||
query_states.dtype) | ||
# repeat k/v heads if n_kv_heads < n_heads | ||
key_states = repeat_kv(key_states, self.num_key_value_groups) | ||
value_states = repeat_kv(value_states, self.num_key_value_groups) | ||
|
||
attn_weights = torch.matmul(query_states, | ||
key_states.transpose(2, 3)) * self.scaling | ||
|
||
if attention_mask is not None: | ||
attn_weights = attn_weights + attention_mask | ||
|
||
# upcast attention to fp32 | ||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, | ||
dtype=torch.float32).to(query_states.dtype) | ||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, | ||
training=self.training) | ||
attn_output = torch.matmul(attn_weights, value_states) | ||
|
||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | ||
|
||
attn_output = self.o_proj(attn_output) | ||
|
||
if not output_attentions: | ||
attn_weights = None | ||
return attn_output, attn_weights, past_key_value | ||
|
||
|
||
def glm_model_forward_wrapper(origin_forward): | ||
def glm_model_forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[Cache] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
**flash_attn_kwargs, | ||
): | ||
# ipex-llm changes start | ||
# IPEX-LLM OPT: kv cache and quantize kv cache | ||
inputs = input_ids if input_ids is not None else inputs_embeds | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
use_cache = use_cache or inputs.device.type == 'xpu' | ||
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs, | ||
self.config.num_attention_heads // | ||
self.config.num_key_value_heads) | ||
|
||
if use_cache: | ||
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): | ||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) | ||
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): | ||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) | ||
# ipex-llm changes end | ||
|
||
return origin_forward( | ||
self=self, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
cache_position=cache_position, | ||
**flash_attn_kwargs, | ||
) | ||
|
||
return glm_model_forward |