Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Stable Diffusion examples on GPU and CPU #11166

Merged
merged 9 commits into from
Jun 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/llm/example/CPU/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ This folder contains examples of running IPEX-LLM on Intel CPU:
- [Native-Models](Native-Models): converting & running LLM in `llama`/`chatglm`/`bloom`/`gptneox`/`starcoder` model family using native (cpp) implementation
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel CPUs
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel CPUs

- [StableDiffusion-Models](StableDiffusion): running **stable diffusion** models on Intel CPUs.

## System Support
**Hardware**:
Expand Down
45 changes: 45 additions & 0 deletions python/llm/example/CPU/StableDiffusion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Stable Diffusion
In this directory, you will find examples on how to run StableDiffusion models on CPU.

### 1. Installation
#### 1.1. Install IPEX-LLM
Follow the instructions in [IPEX-LLM CPU installation guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Overview/install_cpu.html) to install ipex-llm. We recommend to use miniconda to manage your python environment.

#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda activate diffusion
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
pip install setuptools==69.5.1
```

### 2. Examples

#### 2.1 StableDiffusion XL Example
The example shows how to run StableDiffusion XL example on Intel CPU.
```bash
python ./sdxl.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.

The sample output image looks like below.
![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-cpu.png)

#### 4.2 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel CPU.
```bash
python ./lora-lcm.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-cpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.
55 changes: 55 additions & 0 deletions python/llm/example/CPU/StableDiffusion/lora-lcm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora

import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse


def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("cpu")

# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)

generator = torch.manual_seed(42)
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
image.save(args.save_path)

if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-cpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)
47 changes: 47 additions & 0 deletions python/llm/example/CPU/StableDiffusion/sdxl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl

from diffusers import AutoPipelineForText2Image
import torch
import ipex_llm
import numpy as np
from PIL import Image
import argparse


def main(args):
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.float16,
use_safetensors=True
).to("cpu")

image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
image.save(args.save_path)

if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="sdxl-cpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=20,
help="Number of inference steps")
args = parser.parse_args()
main(args)
3 changes: 2 additions & 1 deletion python/llm/example/GPU/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ This folder contains examples of running IPEX-LLM on Intel GPU:
- [PyTorch-Models](PyTorch-Models): running any PyTorch model on IPEX-LLM (with "one-line code change")
- [Speculative-Decoding](Speculative-Decoding): running any ***Hugging Face Transformers*** model with ***self-speculative decoding*** on Intel GPUs
- [ModelScope-Models](ModelScope-Models): running ***ModelScope*** model with IPEX-LLM on Intel GPUs
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics
- [Long-Context](Long-Context): running **long-context** generation with IPEX-LLM on Intel Arc™ A770 Graphics.
- [StableDiffusion](StableDiffusion): running **stable diffusion** with IPEX-LLM on Intel GPUs.


## System Support
Expand Down
119 changes: 119 additions & 0 deletions python/llm/example/GPU/StableDiffusion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Stable Diffusion
In this directory, you will find examples on how to run StableDiffusion models on [Intel GPUs](../README.md).

### 1. Installation
#### 1.1 Install IPEX-LLM
Follow the instructions in IPEX-GPU installation guides ([Linux Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_linux_gpu.html), [Windows Guide](https://ipex-llm.readthedocs.io/en/latest/doc/LLM/Quickstart/install_windows_gpu.html)) according to your system to install IPEX-LLM. After the installation, you should have created a conda environment, named diffusion for instance.

#### 1.2 Install dependencies for Stable Diffusion
Assume you have created a conda environment named diffusion with ipex-llm installed. Run below commands to install dependencies for running Stable Diffusion.
```bash
conda activate diffusion
pip install diffusers["torch"] transformers
pip install -U PEFT transformers
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
</details>

<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```

</details>

<details>

<summary>For Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>

> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

### 4. Examples

#### 4.1 StableDiffusion XL Example
The example shows how to run StableDiffusion XL example on Intel GPU.
```bash
python ./sdxl.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'An astronaut in the forest, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `sdxl-gpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `20`.


The sample output image looks like below.
![image](https://llm-assets.readthedocs.io/en/latest/_images/sdxl-gpu.png)

#### 4.2 LCM-LoRA Example
The example shows how to performing inference with LCM-LoRA on Intel GPU.
```bash
python ./lora-lcm.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the stable diffusion xl model (e.g. `stabilityai/stable-diffusion-xl-base-1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'stabilityai/stable-diffusion-xl-base-1.0'`.
- `--lora-weights-path`: argument defining the huggingface repo id for the LCM-LoRA model (e.g. `latent-consistency/lcm-lora-sdxl`) to be downloaded, or the path to huggingface checkpoint folder. It is default to be `'latent-consistency/lcm-lora-sdxl'`.
- `--prompt PROMPT`: argument defining the prompt to be infered. It is default to be `'A lovely dog on the table, detailed, 8k'`.
- `--save-path`: argument defining the path to save the generated figure. It is default to be `lcm-lora-sdxl-gpu.png`.
- `--num-steps`: argument defining the number of inference steps. It is default to be `4`.
55 changes: 55 additions & 0 deletions python/llm/example/GPU/StableDiffusion/lora-lcm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora

ivy-lv11 marked this conversation as resolved.
Show resolved Hide resolved
import torch
from diffusers import DiffusionPipeline, LCMScheduler
import ipex_llm
import argparse


def main(args):
pipe = DiffusionPipeline.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
).to("xpu")

# set scheduler
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

# load LCM-LoRA
pipe.load_lora_weights(args.lora_weights_path)

generator = torch.manual_seed(42)
image = pipe(
prompt=args.prompt, num_inference_steps=args.num_steps, generator=generator, guidance_scale=1.0
).images[0]
image.save(args.save_path)

if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion lora-lcm")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--lora-weights-path',type=str,default="latent-consistency/lcm-lora-sdxl",
help='The huggingface repo id for the lcm lora sdxl checkpoint')
parser.add_argument('--prompt', type=str, default="A lovely dog on the table, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="lcm-lora-sdxl-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=4,
help="Number of inference steps")
args = parser.parse_args()
main(args)
47 changes: 47 additions & 0 deletions python/llm/example/GPU/StableDiffusion/sdxl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Code is adapted from https://huggingface.co/docs/diffusers/en/using-diffusers/sdxl

from diffusers import AutoPipelineForText2Image
import torch
import ipex_llm
import numpy as np
from PIL import Image
import argparse


def main(args):
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
args.repo_id_or_model_path,
torch_dtype=torch.bfloat16,
use_safetensors=True
).to("xpu")

image = pipeline_text2image(prompt=args.prompt,num_inference_steps=args.num_steps).images[0]
image.save(args.save_path)

if __name__=="__main__":
parser = argparse.ArgumentParser(description="Stable Diffusion")
parser.add_argument('--repo-id-or-model-path', type=str, default="stabilityai/stable-diffusion-xl-base-1.0",
help='The huggingface repo id for the stable diffusion model checkpoint')
parser.add_argument('--prompt', type=str, default="An astronaut in the forest, detailed, 8k",
help='Prompt to infer')
parser.add_argument('--save-path',type=str,default="sdxl-gpu.png",
help="Path to save the generated figure")
parser.add_argument('--num-steps',type=int,default=20,
help="Number of inference steps")
args = parser.parse_args()
main(args)
Loading