Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use new rotary two in chatglm4 #11312

Merged
merged 2 commits into from
Jun 13, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 32 additions & 65 deletions python/llm/src/ipex_llm/transformers/models/chatglm4.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,6 @@ def chatglm4_model_forward(
) -> Union[Tuple, BaseModelOutputWithPast]:
from ipex_llm.transformers.kv import DynamicFp8Cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
# if use_cache and use_quantize_kv_cache(
# self.encoder.layers[0].self_attention.query_key_value, input_ids):
# if not isinstance(past_key_values, DynamicFp8Cache):
# past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
return chatglm4_model_forward_internal(
self=self,
input_ids=input_ids,
Expand Down Expand Up @@ -108,25 +104,17 @@ def chatglm4_model_forward_internal(
dtype=torch.int64, device=inputs_embeds.device)
position_ids = position_ids.repeat(batch_size, 1)

use_fuse_rope = input_ids.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not self.training

# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
if use_fuse_rope:
# Repeat cos sin here, call only once for each token.
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
# If put this to attension forward, it will generate too many times.
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
cos = cos.squeeze(-1)
sin = sin.squeeze(-1)
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
rotary_pos_emb = (cos, sin)
if getattr(self.rotary_pos_emb, "cached_dtype", None) != inputs_embeds.dtype:
rot_dim = self.rotary_pos_emb.dim
base = 10000 * getattr(self.rotary_pos_emb, "rope_ratio", 1)
# We should generate float inv_freq to avoid overflow, as base is too large.
inv_freq = 1.0 / (base ** (torch.arange(0, rot_dim, 2,
dtype=torch.float,
device=inputs_embeds.device) / rot_dim))
self.rotary_pos_emb.register_buffer("inv_freq",
inv_freq.to(inputs_embeds.dtype),
persistent=False)
self.rotary_pos_emb.cached = True

# `full_attention_mask` is not None only when
# `past_key_values` is not None and `seq_length` > 1
Expand All @@ -148,7 +136,7 @@ def chatglm4_model_forward_internal(

hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, causal_mask,
rotary_pos_emb=rotary_pos_emb,
rotary_pos_emb=(self.rotary_pos_emb.inv_freq, position_ids),
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
# ipex-llm changes end
Expand All @@ -172,26 +160,6 @@ def chatglm4_model_forward_internal(
)


def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [b, np, sq, hn]
b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:, :sq]
xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)


def chatglm4_attention_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
Expand All @@ -209,34 +177,33 @@ def chatglm4_attention_forward(
qkv = self.query_key_value(hidden_states)
# [bs, q_len, np * 3 * hn] -> [bsz, n_head, seq_len, head_dim]
qkv = qkv.view(bsz, q_len, n_head + 2 * n_kv_head, head_dim)
qkv = qkv.transpose(1, 2)

query_states, key_states, value_states = qkv.split([n_head,
n_kv_head,
n_kv_head], dim=2)
n_kv_head], dim=1)

kv_seq_len = key_states.shape[1]
kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]

if isinstance(rotary_pos_emb, tuple) and len(rotary_pos_emb) == 2:
# use_fuse_rope, see chatglm4_model_forward
cos, sin = rotary_pos_emb
rot_dim = cos.shape[-1]
query_layer_cur = query_states[..., :rot_dim]
key_layer_cur = key_states[..., :rot_dim]
# ipex_llm's apply_rotary_embedding can change the origin storage,
# so query_layer will get the result directly.
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
elif rotary_pos_emb is not None:
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)
# IPEX-LLM OPT: fuse rope
inv_freq, position_ids = rotary_pos_emb
rot_dim = inv_freq.size(-1) * 2
if should_use_fuse_rope(hidden_states, rotary_pos_emb[1], self.training):
import xe_addons
xe_addons.rotary_two_inplaced(inv_freq, position_ids,
query_states[..., :rot_dim], key_states[..., :rot_dim])
else:
idx_theta = torch.outer(position_ids[0].float(),
inv_freq.float()).to(hidden_states.dtype)
idx_theta = idx_theta.unsqueeze(0).unsqueeze(0)
cos = torch.cos(idx_theta).repeat_interleave(2, -1)
sin = torch.sin(idx_theta).repeat_interleave(2, -1)
q_rot, k_rot = apply_rotary_pos_emb(query_states[..., :rot_dim], key_states[..., :rot_dim],
cos, sin, position_ids, "chatglm")
query_states[..., :rot_dim] = q_rot[...]
key_states[..., :rot_dim] = k_rot[...]

# IPEX-LLM OPT: kv cache and quantize kv
use_quantize_kv = use_quantize_kv_cache(self.query_key_value, hidden_states)
Expand Down
Loading