Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ChatGLM3-6B LoRA Fine-tuning Demo #11450

Merged
merged 6 commits into from
Jul 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions python/llm/example/GPU/LLM-Finetuning/LoRA/chatglm_finetune/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
# LoRA Fine-Tuning on ChatGLM3-6B with IPEX-LLM

This example ports [ChatGLM3-6B lora_finetune](https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/lora_finetune.ipynb) demo to IPEX-LLM on [Intel Arc GPU](../../README.md).

### 1. Install

```bash
conda create -n llm python=3.11
conda activate llm
pip install "jieba>=0.42.1"
pip install "ruamel_yaml>=0.18.6"
pip install "rouge_chinese>=1.0.3"
pip install "jupyter>=1.0.0"
pip install "datasets>=2.18.0"
pip install "peft>=0.10.0"
pip install typer
pip install sentencepiece
pip install nltk
pip install "numpy<2.0.0"
pip install "deepspeed==0.13.1"
pip install "mpi4py>=3.1.5"
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install oneccl_bind_pt==2.1.100 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Single ARC doesn't need oneccl

Copy link
Contributor Author

@Uxito-Ada Uxito-Ada Jun 27, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is necessary, as XPU accelerator needs CCL. Without CCL, accelerator will switch to CUDA, and trainer will schedule model to CPU rather than XPU.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

OK

```

### 2. Configures OneAPI Environment Variables
```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. LoRA Fine-Tune on ChatGLM3-6B

First, download the dataset: we use `AdvertiseGen` to finetune ChatGLM3-6B in the following, and please now get it from [Google Drive](https://drive.google.com/file/d/13_vf0xRTQsyneRKdD1bZIr93vBGOczrk/view?usp=sharing) or [Tsinghua Cloud](https://cloud.tsinghua.edu.cn/f/b3f119a008264b1cabd1/?dl=1), and unzip it in the current directory. Then, process the dataset with the below script:

```bash
python process_advertise_gen_dataset.py
```

Then, './AdvertiseGen' will be converted to './AdvertiseGen_fix'. Now, we have prepared the dataset, and are going to start LoRA fine-tuning on ChatGLM3-6B.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

' changes to ` will high this work


#### 3.1. Fine-Tune with a Single Arc Card

Start the fine-tuning by:

Uxito-Ada marked this conversation as resolved.
Show resolved Hide resolved
```bash
bash lora_finetuning_on_chatglm3_6b_with_1_arc_card.sh
```

Then, you will get output are as below:

```bash
2024-06-27 13:47:02,680 - root - INFO - intel_extension_for_pytorch auto imported
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.47it/s]
2024-06-27 13:47:03,794 - ipex_llm.transformers.utils - INFO - Converting the current model to bf16 format......
[2024-06-27 13:47:04,105] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to xpu (auto detect)
trainable params: 487,424 || all params: 6,244,071,424 || trainable%: 0.0078
PeftModelForCausalLM(
(base_model): LoraModel(
(model): ChatGLMForConditionalGeneration(
(transformer): ChatGLMModel(
(embedding): Embedding(
(word_embeddings): Embedding(65024, 4096)
)
(rotary_pos_emb): RotaryEmbedding()
(encoder): GLMTransformer(
(layers): ModuleList(
(0-27): 28 x GLMBlock(
(input_layernorm): RMSNorm()
(self_attention): SelfAttention(
(query_key_value): LoraLowBitLinear(
(base_layer): BF16Linear(in_features=4096, out_features=4608, bias=True)
(lora_dropout): ModuleDict(
(default): Dropout(p=0.1, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=2, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=2, out_features=4608, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(qa_pool): Identity()
)
(core_attention): CoreAttention(
(attention_dropout): Dropout(p=0.0, inplace=False)
)
(dense): BF16Linear(in_features=4096, out_features=4096, bias=False)
)
(post_attention_layernorm): RMSNorm()
(mlp): MLP(
(dense_h_to_4h): BF16Linear(in_features=4096, out_features=27392, bias=False)
(dense_4h_to_h): BF16Linear(in_features=13696, out_features=4096, bias=False)
)
)
)
(final_layernorm): RMSNorm()
)
(output_layer): BF16Linear(in_features=4096, out_features=65024, bias=False)
)
)
)
)
--> Model

--> model has 0.487424M params

train_dataset: Dataset({
features: ['input_ids', 'labels'],
num_rows: 114599
})
val_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
test_dataset: Dataset({
features: ['input_ids', 'output_ids'],
num_rows: 1070
})
--> Sanity check
'[gMASK]': 64790 -> -100
'sop': 64792 -> -100
'<|user|>': 64795 -> -100
'': 30910 -> -100
'\n': 13 -> -100
......

# Here it takes time to finish the whole fine-tuning

......

Training completed. Do not forget to share your model on huggingface.co/models =)


{'train_runtime': xxxx.xxxx, 'train_samples_per_second': x.xxx, 'train_steps_per_second': x.xxx, 'train_loss': xx.xx, 'epoch': x.xx}
100%|████████████████████████████████████████████████████████████████████████████████████████████| 3000/3000 [xx:xx<00:00, x.xxit/s]
***** Running Prediction *****
Num examples = 1070
Batch size = 4
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 268/268 [xx:xx<00:00, x.xxs/it]
```

#### 3.2. Fine-Tune with 2 Arc Cards

Start the data-parallel fine-tuning on 2 Intel Arc XPU cards by:

```bash
bash lora_finetuning_on_chatglm3_6b_with_2_arc_cards.sh
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
{
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu"
},
"contiguous_gradients": true,
"overlap_comm": true
},
"bf16": {
"enabled": true
},
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto"
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# This is ported from https://github.com/THUDM/ChatGLM3/blob/main/finetune_demo/configs/lora.yaml
data_config:
train_file: train.json
val_file: dev.json
test_file: dev.json
num_proc: 16
max_input_length: 128
max_output_length: 128
training_args:
# see `transformers.Seq2SeqTrainingArguments`
output_dir: ./output
max_steps: 3000
# needed to be fit for the dataset
learning_rate: 5e-5
# settings for data loading
per_device_train_batch_size: 1
dataloader_num_workers: 16
remove_unused_columns: false
# settings for saving checkpoints
save_strategy: steps
save_steps: 500
# settings for logging
log_level: info
logging_strategy: steps
logging_steps: 10
# settings for evaluation
per_device_eval_batch_size: 4
evaluation_strategy: steps
eval_steps: 1000
# settings for optimizer
# adam_epsilon: 1e-6
# uncomment the following line to detect nan or inf values
# debug: underflow_overflow
predict_with_generate: true
# see `transformers.GenerationConfig`
generation_config:
max_new_tokens: 128
# set your absolute deepspeed path here
#deepspeed: ds_zero_2.json
# set to true if train with cpu.
use_cpu: false
peft_config:
peft_type: LORA
task_type: CAUSAL_LM
r: 2
lora_alpha: 8
lora_dropout: 0.1
Loading
Loading