Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean npu dtype branch #11515

Merged
merged 3 commits into from
Jul 5, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,6 +332,11 @@ def from_pretrained(cls,
else:
kwargs["pretraining_tp"] = 1
q_k = load_in_low_bit if load_in_low_bit else "sym_int4"

invalidInputError(q_k not in ["sym_int4_rtn", "sym_int8_rtn"],
f"The dtype {q_k} is specified for NPU"
"and cannot be used on CPU and GPU")

imatrix_file = kwargs.pop("imatrix", None)
if q_k in ["gguf_iq2_xxs", "gguf_iq2_xs", "gguf_iq1_s"]:
invalidInputError(imatrix_file is not None,
Expand Down
69 changes: 18 additions & 51 deletions python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,6 @@
from transformers.dynamic_module_utils import get_imports
from transformers.configuration_utils import PretrainedConfig

import intel_npu_acceleration_library as npu_lib

from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.utils import logger
from ipex_llm.transformers.npu_models.convert import optimize_llm
Expand Down Expand Up @@ -90,23 +88,12 @@ def from_pretrained(cls,
warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used")
kwargs['torch_dtype'] = torch.float

low_bit = kwargs.pop('load_in_low_bit', 'fp32')
try:
# for intel_npu_acceleration_library >= 1.1.0
from intel_npu_acceleration_library.dtypes import int8, int4
qtype_map = {
'sym_int4': "sym_int4_rtn",
'sym_int8': "sym_int8_rtn",
'fp16': torch.half,
'fp32': torch.float,
}
except ImportError as _e:
# for intel_npu_acceleration_library < 1.1.0
qtype_map = {
'sym_int8': torch.int8,
'fp16': torch.half,
'fp32': torch.float,
}
low_bit = kwargs.pop('load_in_low_bit', 'sym_int4')
qtype_map = {
'sym_int4': "sym_int4_rtn",
'sym_int8': "sym_int8_rtn",
}

invalidInputError(low_bit in qtype_map.keys(),
f"unsupported low_bit: {low_bit}, "
f"only {list(qtype_map.keys())} are supported")
Expand Down Expand Up @@ -143,22 +130,13 @@ def from_pretrained(cls,
model.config.update({"bigdl_lcmu_enabled": False})

logger.info(f"Converting model, it may takes up to several minutes ...")
try:
# for intel_npu_acceleration_library >= 1.1.0
from intel_npu_acceleration_library.quantization import quantize_model
from intel_npu_acceleration_library.compiler import create_npu_kernels
with torch.no_grad():
optimize_llm(model)
if qtype in ["sym_int8_rtn", "sym_int4_rtn"]:
cls.load_convert(qtype, model, 'cpu', *args, **kwargs)
else:
if not qtype.is_floating_point:
model = quantize_model(model, qtype)
create_npu_kernels(model)
model = model.eval()
except ImportError as _e:
# for intel_npu_acceleration_library < 1.1.0
model = npu_lib.compile(model, qtype, False)

with torch.no_grad():
optimize_llm(model)
cls.load_convert(qtype, model, 'cpu', *args, **kwargs)

model = model.eval()

logger.info(f"Finish to convert model")

model.config.update({"bigdl_transformers_low_bit": qtype})
Expand Down Expand Up @@ -313,22 +291,11 @@ def load_low_bit(cls, pretrained_model_name_or_path: str, *model_args, **kwargs)
# Loading args may differ based on their usage
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
logger.info(f"Converting model, it may takes up to several minutes ...")
try:
# for intel_npu_acceleration_library >= 1.1.0
from intel_npu_acceleration_library.quantization import quantize_model
from intel_npu_acceleration_library.compiler import create_npu_kernels
with torch.no_grad():
optimize_llm(model)
if qtype in ["sym_int8_rtn", "sym_int4_rtn"]:
cls.load_convert(qtype, model, quant_device, *model_args, **kwargs)
else:
if not qtype.is_floating_point:
model = quantize_model(model, qtype)
create_npu_kernels(model)
model = model.eval()
except ImportError as _e:
# for intel_npu_acceleration_library < 1.1.0
model = npu_lib.compile(model, qtype, False)
with torch.no_grad():
optimize_llm(model)
cls.load_convert(qtype, model, quant_device, *model_args, **kwargs)

model = model.eval()

if is_sharded:
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
Expand Down
Loading