Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support npu glm4 #11539

Merged
merged 1 commit into from
Jul 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/models/chatglm4.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ def chatglm4_attention_forward(
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
key_states.transpose(2, 3)).to(value_states.dtype)
key_states.transpose(2, 3))
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
Expand Down
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/models/chatglm4v.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,7 @@ def chatglm4v_attention_forward(
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)
attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
key_states.transpose(2, 3)).to(value_states.dtype)
key_states.transpose(2, 3))
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
if kv_seq_len >= 2048 or bsz >= 64:
Expand Down
251 changes: 251 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/chatglm4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://huggingface.co/THUDM/chatglm2-6b-32k/blob/main/configuration_chatglm.py
#

import torch
from typing import Optional, Tuple, Union
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.transformers.npu_models.chatglm import repeat_kv
from transformers.modeling_outputs import BaseModelOutputWithPast
import math


def chatglm4_model_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else
self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if inputs_embeds is None:
batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
else:
batch_size, seq_length, _ = inputs_embeds.shape
input_ids = torch.empty((batch_size, seq_length),
dtype=inputs_embeds.dtype, device=inputs_embeds.device)

if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or\
(past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)

# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]

# ipex-llm changes begin:
# generate `causal_mask` and replace `full_attention_mask` with it

# `full_attention_mask` is not None only when
# `past_key_values` is not None and `seq_length` > 1
if full_attention_mask is not None:
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
else:
causal_mask = None

hidden_states, presents, all_hidden_states, all_self_attentions = chatglm4_encoder_forward(
self.encoder, inputs_embeds, causal_mask, rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
# ipex-llm changes end

if presents is not None and type(presents) is torch.Tensor:
presents = presents.split(1, dim=0)
presents = list(presents)
presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
presents = tuple(presents)

if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
if v is not None)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)


def chatglm4_encoder_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False

all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)

layer = self._get_layer(index)
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches[index],
use_cache,
use_reentrant=False
)
else:
# if kv_caches[index] is not None:
layer_ret = layer(
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=kv_caches[index],
use_cache=use_cache
)
hidden_states, kv_cache = layer_ret

# ipex-llm changes start: use tuple format kv cache
if use_cache:
presents = presents + (kv_cache,)
# ipex-llm changes end

if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)

# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)

return hidden_states, presents, all_hidden_states, all_self_attentions


@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [b, np, sq, hn]
b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:, :sq]
xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)


def chatglm4_attention_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
# hidden_states: [b, sq, h]
bsz, q_len, _ = hidden_states.size()

# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
past_key_value = kv_cache

n_head = self.num_attention_heads_per_partition
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
head_dim = self.hidden_size_per_attention_head

qkv = self.query_key_value(hidden_states)
# [bs, q_len, np * 3 * hn] -> [bsz, n_head, seq_len, head_dim]
qkv = qkv.view(bsz, q_len, n_head + 2 * n_kv_head, head_dim)
qkv = qkv.transpose(1, 2)

query_states, key_states, value_states = qkv.split([n_head,
n_kv_head,
n_kv_head], dim=1)

if rotary_pos_emb is not None:
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)

kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]

key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, False, hidden_states.device
)

if use_cache:
past_key_value = (key_states, value_states)
else:
past_key_value = None

# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)

if query_states.size(2) == key_states.size(2):
# first token
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
attn_output = scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=attention_mask is None and q_len > 1 and bsz == 1,
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states / math.sqrt(head_dim),
key_states.transpose(2, 3))
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)

# context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, n_head * head_dim)
output = self.dense(attn_output)

return output, past_key_value
22 changes: 16 additions & 6 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -137,12 +137,22 @@ def optimize_llm(model: torch.nn.Module):
convert_forward(model, module.MiniCPMMLP, minicpm_mlp_forward)

elif model.config.model_type == "chatglm":
from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward
from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.ChatGLMModel, chatglm2_model_forward)
convert_forward(model, module.SelfAttention, chatglm2_attention_forward)
if model.config.num_layers == 40 and hasattr(model.config, 'rope_ratio'):
# glm-4-9b
from ipex_llm.transformers.npu_models.chatglm4 import chatglm4_model_forward
from ipex_llm.transformers.npu_models.chatglm4 import chatglm4_attention_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.ChatGLMModel, chatglm4_model_forward)
convert_forward(model, module.SelfAttention, chatglm4_attention_forward)
else:
# chatglm-3-6b
from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward
from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.ChatGLMModel, chatglm2_model_forward)
convert_forward(model, module.SelfAttention, chatglm2_attention_forward)

elif model.config.model_type == "stablelm":
from ipex_llm.transformers.npu_models.stablelm import merge_qkv
Expand Down
Loading