Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add basic glm-edge-v support #12533

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1504,6 +1504,17 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model, module.GlmAttention, glm_attention_forward)
glm_model_forward = glm_model_forward_wrapper(module.GlmModel.forward)
convert_forward(model, module.GlmModel, glm_model_forward)

if hasattr(model.model, "vision"):
# glm-edge-v series
vision_module_name = model.model.vision.__class__.__module__
vision_module = importlib.import_module(vision_module_name)
from transformers.models.siglip.modeling_siglip import SiglipAttention
from ipex_llm.transformers.models.chatglm4v import vision_model_forward
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
convert_forward(model, vision_module.VisionModel, vision_model_forward)
convert_forward(model, SiglipAttention, siglip_attention_forward)

elif "mpt" in model.config.model_type:
if model.config.architectures is not None:
modeling_module_name = model.__class__.__module__
Expand Down
12 changes: 7 additions & 5 deletions python/llm/src/ipex_llm/transformers/models/glm.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@

from typing import Optional, Tuple
from transformers.cache_utils import Cache
from transformers.models.glm.modeling_glm import GlmAttention, GlmMLP
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
from ipex_llm.transformers.models.common import merge_qkv_base
Expand All @@ -46,11 +45,12 @@


def merge_qkv(module: torch.nn.Module):
merge_qkv_base(module, GlmAttention)
merge_qkv_base(module, "GlmAttention")
merge_qkv_base(module, "SiglipAttention")


def split_mlp(module: torch.nn.Module):
if isinstance(module, GlmMLP):
if module.__class__.__name__ == "GlmMLP":
gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0)

gate_proj = torch.nn.Linear(0, 0, bias=False)
Expand Down Expand Up @@ -157,6 +157,7 @@ def glm_model_forward_wrapper(origin_forward):
def glm_model_forward(
self,
input_ids: torch.LongTensor = None,
images: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
Expand All @@ -166,7 +167,7 @@ def glm_model_forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs,
**kwargs,
):
# ipex-llm changes start
# IPEX-LLM OPT: kv cache and quantize kv cache
Expand All @@ -187,6 +188,7 @@ def glm_model_forward(
return origin_forward(
self=self,
input_ids=input_ids,
images=images,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
Expand All @@ -196,7 +198,7 @@ def glm_model_forward(
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**flash_attn_kwargs,
**kwargs,
)

return glm_model_forward
Loading