Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor sd 1.5 and qwen2-vl and fix #12590

Merged
merged 1 commit into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/models/minicpmv.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def siglip_attention_forward(

attn_weights = None
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
query_states, key_states.contiguous(), value_states.contiguous(),
attention_mask, False, 1 / math.sqrt(self.head_dim)
)

Expand Down
3 changes: 1 addition & 2 deletions python/llm/src/ipex_llm/transformers/models/qwen2.py
Original file line number Diff line number Diff line change
Expand Up @@ -583,8 +583,7 @@ def qwen2_attention_forward(
self.layer_idx, None)

attn_weights = None
if query_states.device.type == 'xpu' \
and use_flash_attention(query_states, key_states, attention_mask):
if use_flash_attention(query_states, key_states, attention_mask):
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
Expand Down
55 changes: 15 additions & 40 deletions python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,9 @@
import torch

from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, should_use_fuse_rope
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_sdp_non_causal
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
from ipex_llm.utils.common import invalidInputError
Expand Down Expand Up @@ -198,7 +199,6 @@ def qwen2_vision_attention_forward(
"unexpected input")

if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
import xe_addons
image_num = len(seq_lens) - 1
image_size = seq_lens[1] - seq_lens[0]
guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
Expand All @@ -209,7 +209,10 @@ def qwen2_vision_attention_forward(
v = v.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
# q, k, v: [image_num, num_heads, image_size, head_dim]

attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), None)
attn_output = scaled_dot_product_attention(
q, k.contiguous(), v.contiguous(),
None, False
)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(seq_length, self.num_heads, self.head_dim)
# attn_output: [seq_length, num_heads, head_dim]
Expand All @@ -226,7 +229,10 @@ def qwen2_vision_attention_forward(
tmp_q = q[:, :, start_idx:end_idx, :]
tmp_k = k[:, :, start_idx:end_idx, :]
tmp_v = v[:, :, start_idx:end_idx, :]
attn_output = xe_addons.sdp_non_causal(tmp_q, tmp_k, tmp_v, None)
attn_output = scaled_dot_product_attention(
tmp_q, tmp_k, tmp_v,
None, False
)
attn_output = attn_output.permute(0, 2, 1, 3)
# attn_output: [1, seq_length, num_heads, head_dim]
attn_outputs.append(attn_output)
Expand Down Expand Up @@ -293,42 +299,11 @@ def qwen2_vl_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

kv_seq_len = key_states.size(2)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :kv_seq_len]

attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, causal_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, causal_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if causal_mask is not None:
attn_weights = attn_weights + causal_mask

# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
Expand Down
21 changes: 6 additions & 15 deletions python/llm/src/ipex_llm/transformers/models/sd.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@
from typing import Optional

from ipex_llm.transformers.utils import get_xpu_device_type
from ipex_llm.transformers.models.common import padding_qkv_hd, attention_softmax
from ipex_llm.transformers.models.utils import use_sdp_non_causal
from ipex_llm.transformers.models.common import padding_qkv_hd
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from diffusers.models.attention_processor import Attention


Expand Down Expand Up @@ -110,19 +110,10 @@ def __call__(
if query.device.type == "xpu" and query.dtype in [torch.half, torch.float]:
# padding head_dim 40 to 64
query, key, value = padding_qkv_hd(query, key, value, 40, 64)

if use_sdp_non_causal(query.size(-1), query.device, query.dtype):
import xe_addons
hidden_states = xe_addons.sdp_non_causal(query, key.contiguous(),
value.contiguous(), attention_mask)
else:
scale = 1 / math.sqrt(head_dim)
attn_weights = torch.matmul(query * scale, key.transpose(-1, -2))
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = attention_softmax(attn_weights)
hidden_states = torch.matmul(attn_weights, value)

hidden_states = scaled_dot_product_attention(
query, key.contiguous(), value.contiguous(),
attention_mask, False, 1 / math.sqrt(head_dim)
)
hidden_states = hidden_states[:, :, :, :head_dim]
else:
hidden_states = torch.nn.functional.scaled_dot_product_attention(
Expand Down
Loading