Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add qwen2-vl HF GPU example #12606

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 151 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# Qwen2-VL
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install accelerate==0.33.0
pip install qwen_vl_utils
pip install "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.21.0
pip install addict simplejson python-dateutil sortedcontainers
```

#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.11 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.45.0 # install transformers which supports Qwen2-VL
pip install accelerate==0.33.0
pip install qwen_vl_utils
pip install "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.21.0
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Refer to https://github.com/modelscope/modelscope/blob/master/requirements/datasets.txt, we may have a try on
pip install modelscope[datasets]==1.21.0, as it includes addict simplejson python-dateutil sortedcontainers

pip install addict simplejson python-dateutil sortedcontainers
```

### 2. Configures OneAPI environment variables for Linux

> [!NOTE]
> Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

```bash
source /opt/intel/oneapi/setvars.sh
```

### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
<details>

<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>

```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
```

</details>

<details>

<summary>For Intel Data Center GPU Max Series</summary>

```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
</details>

<details>

<summary>For Intel iGPU</summary>

```bash
export SYCL_CACHE_PERSISTENT=1
```

</details>

#### 3.2 Configurations for Windows
<details>

<summary>For Intel iGPU and Intel Arc™ A-Series Graphics</summary>

```cmd
set SYCL_CACHE_PERSISTENT=1
```

</details>


> [!NOTE]
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe this image.'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct)
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
Describe this image.
-------------------- Output --------------------
The image depicts a young child holding a small white teddy bear. The teddy bear is dressed in a pink outfit, which includes a pink skirt and a
```

```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Prompt --------------------
请描述这幅图片
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's use What is in the image? and 图片里有什么? as the sample prompts to make it consistent with other examples. And move Chinese prompt to the 1st sample output.

-------------------- Output --------------------
这是一张小女孩抱着一个白色的小熊玩偶的图片。小女孩穿着一件粉红色的条纹连衣裙,手里抱着的小熊玩偶
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
125 changes: 125 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from ipex_llm.transformers import Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
help='The huggingface repo id for the Qwen2-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Describe this image.",
help='Prompt to infer')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
help='The URL or path to the image to infer')

parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
if args.modelscope:
from modelscope import AutoProcessor
model_hub = 'modelscope'
else:
from transformers import AutoProcessor
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path

model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
trust_remote_code=True,
torch_dtype='auto',
modules_to_not_convert=["visual"],
load_in_4bit=True,
low_cpu_mem_usage=True,
use_cache=True,
model_hub=model_hub)

Copy link
Contributor

@Oscilloscope98 Oscilloscope98 Jan 2, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

    model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
                                                 load_in_4bit=True,
                                                 optimize_model=True,
                                                 trust_remote_code=True,
                                                 modules_to_not_convert=["vision"],
                                                 use_cache=True,
                                                 model_hub=model_hub)

# Use .float() for better output, and use .half() for better speed
model = model.half().to("xpu")

# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

prompt = args.prompt
image_path = args.image_url_or_path

messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to('xpu')

with torch.inference_mode():
# warmup
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)

st = time.time()
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]

response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)
5 changes: 5 additions & 0 deletions python/llm/src/ipex_llm/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,10 @@
AutoModelForSequenceClassification, AutoModelForMaskedLM, \
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
AutoModelForTokenClassification

import transformers
if transformers.__version__ >= '4.45.0':
from .model import Qwen2VLForConditionalGeneration

from .modelling_bigdl import *
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
5 changes: 5 additions & 0 deletions python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -839,3 +839,8 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass):

class AutoModelForTokenClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForTokenClassification


if transformers.__version__ >= '4.45.0':
class Qwen2VLForConditionalGeneration(_BaseAutoModelClass):
HF_Model = transformers.Qwen2VLForConditionalGeneration
Loading