Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support deepspeed AutoTP #9230

Merged
merged 9 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions python/llm/example/GPU/Deepspeed-AutoTP/deepspeed_autotp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import torch
import transformers
import deepspeed

local_rank = int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))

from bigdl.llm import optimize_model

import torch
import intel_extension_for_pytorch as ipex
import time
import argparse

from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it
from transformers import LlamaTokenizer, AutoTokenizer

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = AutoModelForCausalLM.from_pretrained(args.repo_id_or_model_path,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
trust_remote_code=True,
use_cache=True)

model = deepspeed.init_inference(
model,
mp_size=world_size,
dtype=torch.float16,
replace_method="auto",
)

# move model to cpu and use bigdl-llm `optimize_model` to convert the
# model into optimized low bit format
# convert the rest of the model into float16 to reduce allreduce traffic
model = optimize_model(model.module.to(f'cpu'), low_bit='sym_int4').to(torch.float16)

# move model back to xpu
model = model.to(f'xpu:{local_rank}')

print(model)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
# prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
prompt = args.prompt
# input_str = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:\n"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}')
# ipex model needs a warmup, then inference time can be accurate
output = model.generate(input_ids,
max_new_tokens=args.n_predict,
use_cache=True)

# start inference
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
do_sample=False,
max_new_tokens=args.n_predict)
torch.xpu.synchronize()
end = time.time()
if local_rank == 0:
output = output.cpu()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
12 changes: 12 additions & 0 deletions python/llm/example/GPU/Deepspeed-AutoTP/run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
source bigdl-llm-init -t -g
export MASTER_ADDR=127.0.0.1
export CCL_ZE_IPC_EXCHANGE=sockets
if [[ -n $OMP_NUM_THREADS ]]; then
export OMP_NUM_THREADS=$(($OMP_NUM_THREADS / 4))
else
export OMP_NUM_THREADS=$(($(nproc) / 4))
fi
torchrun --standalone \
--nnodes=1 \
--nproc-per-node 4 \
deepspeed_autotp.py --repo-id-or-model-path "meta-llama/Llama-2-7b-hf"
50 changes: 45 additions & 5 deletions python/llm/src/bigdl/llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,42 @@
from .utils import logger


def is_deepspeed_available():
return importlib.util.find_spec("deepspeed") is not None


def is_linear_module(module):

in_features = None
out_features = None
mp_group = None

if isinstance(module, nn.Linear):
in_features = module.in_features
out_features = module.out_features
mp_group = None
result = True
else:
if is_deepspeed_available():
from deepspeed.module_inject.layers import LinearLayer, LinearAllreduce
if isinstance(module, LinearLayer):
in_features = module.weight.shape[1]
out_features = module.weight.shape[0]
mp_group = None
result = True
elif isinstance(module, LinearAllreduce):
in_features = module.weight.shape[1]
out_features = module.weight.shape[0]
mp_group = module.mp_group
result = True
else:
result = False
else:
result = False

return result, (in_features, out_features, mp_group)


def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
current_key_name=None, convert_shape_only=False):
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, FP16Linear
Expand All @@ -54,17 +90,20 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
if current_key_name is None:
current_key_name = []

if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
is_linear, linear_args = is_linear_module(module)
if is_linear and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
in_features, out_features, mp_group = linear_args
with init_empty_weights():
new_linear = None
if qtype != ggml_tensor_qtype["fp16"]:
new_linear = LowBitLinear(
module.in_features,
module.out_features,
in_features,
out_features,
qtype,
module.bias is not None,
mp_group=mp_group,
)

device_type = module.weight.data.device.type
Expand All @@ -82,10 +121,11 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
if module.in_features in [4096, 11008]:
# esimd fp16 path
new_linear = FP16Linear(
module.in_features,
module.out_features,
in_features,
out_features,
qtype,
module.bias is not None,
mp_group=mp_group,
)
device_type = module.weight.data.device.type

Expand Down
12 changes: 10 additions & 2 deletions python/llm/src/bigdl/llm/transformers/low_bit_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,7 +328,7 @@ def backward(ctx, grad_output):

class LowBitLinear(nn.Linear):
def __init__(self, input_features, output_features, qtype, bias=True,
conver_to_half=True):
conver_to_half=True, mp_group=None):
super().__init__(input_features, output_features, bias)
self.weight = FP4Params(self.weight.data,
requires_grad=False,
Expand All @@ -339,6 +339,7 @@ def __init__(self, input_features, output_features, qtype, bias=True,
self.weight_length = self.out_len * self.in_len
self.qtype = qtype
self.conver_to_half = conver_to_half
self.mp_group = mp_group

def forward(self, x: torch.Tensor):
if self.bias is not None and self.bias.dtype != x.dtype:
Expand Down Expand Up @@ -378,6 +379,9 @@ def forward(self, x: torch.Tensor):
input_seq_size)
new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)
if self.mp_group is not None:
from deepspeed import comm as dist
dist.inference_all_reduce(result, group=self.mp_group)
if self.bias is not None:
result += self.bias
else:
Expand All @@ -400,14 +404,15 @@ def forward(self, x: torch.Tensor):

class FP16Linear(nn.Linear):
def __init__(self, input_features, output_features, qtype, bias=True,
conver_to_half=True):
conver_to_half=True, mp_group=None):
super().__init__(input_features, output_features, bias)
self.in_len = input_features
self.out_len = output_features
self.weight_shape = (self.out_len, self.in_len)
self.weight_length = self.out_len * self.in_len
self.qtype = qtype
self.conver_to_half = conver_to_half
self.mp_group = mp_group

def forward(self, x: torch.Tensor):
if self.bias is not None and self.bias.dtype != x.dtype:
Expand Down Expand Up @@ -442,6 +447,9 @@ def forward(self, x: torch.Tensor):

new_shape = x_shape[:-1] + (self.out_len,)
result = result.view(new_shape)
if self.mp_group is not None:
from deepspeed import comm as dist
dist.inference_all_reduce(result, group=self.mp_group)
if self.bias is not None:
result += self.bias

Expand Down
22 changes: 20 additions & 2 deletions python/llm/src/bigdl/llm/transformers/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
# limitations under the License.

import torch
import importlib
import torch.nn as nn
from typing import Optional, Tuple
import math
Expand All @@ -58,10 +59,27 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
KV_CACHE_ALLOC_BLOCK_LENGTH = 256


def get_ipex_version():

if importlib.util.find_spec("intel_extension_for_pytorch") is not None:
import intel_extension_for_pytorch as ipex
return ipex.__version__
else:
return None


ipex_version = get_ipex_version()


def llama_rms_norm_forward(self, hidden_states):
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
hidden_states, _ = torch.ops.torch_ipex.rms_norm(hidden_states,
[self.weight.size(0)], self.weight)
if ipex_version == "2.0.110+xpu":
hidden_states, _ = torch.ops.torch_ipex.rms_norm(hidden_states,
[self.weight.size(0)], self.weight)
else:
hidden_states, _ = torch.ops.torch_ipex.rms_norm(hidden_states,
[self.weight.size(0)], self.weight,
self.variance_epsilon)
else:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
Expand Down
Loading