Skip to content

Latest commit

 

History

History
83 lines (52 loc) · 2.27 KB

File metadata and controls

83 lines (52 loc) · 2.27 KB

densenet264_imagenet

Module Name densenet264_imagenet
Category image classification
Network DenseNet
Dataset ImageNet-2012
Fine-tuning supported or not No
Module Size 135MB
Latest update date -
Data indicators -

I.Basic Information

  • Module Introduction

    • DenseNet is the model in CVPR2017 best paper. Every layer outputs its result as input for the layer after it, and forms the dense connection topology. The dense connection ease the probblem of vanishing gradient and improve the information flow. This module is based on DenseNet264, trained on ImageNet-2012, and can predict an image of size 2242243.

II.Installation

III.Module API Prediction

  • 1、Command line Prediction

    • $ hub run densenet264_imagenet --input_path "/PATH/TO/IMAGE"
    • If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
  • 2、Prediction Code Example

    • import paddlehub as hub
      import cv2
      
      classifier = hub.Module(name="densenet264_imagenet")
      test_img_path = "/PATH/TO/IMAGE"
      input_dict = {"image": [test_img_path]}
      result = classifier.classification(data=input_dict)
  • 3、API

    • def classification(data)
      • classification API.

      • Parameters

        • data (dict): key is "image", value is a list of image paths
      • Return

        • result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability

IV.Release Note

  • 1.0.0

    First release

    • $ hub install densenet264_imagenet==1.0.0