Module Name | resnet50_vd_10w |
---|---|
Category | image classification |
Network | ResNet_vd |
Dataset | Baidu Dataset |
Fine-tuning supported or not | No |
Module Size | 92MB |
Latest update date | - |
Data indicators | - |
-
- ResNet proposed a residual unit to solve the problem of training an extremely deep network, and improved the prediction accuracy of models. ResNet-vd is a variant of ResNet. This module is based on ResNet_vd, trained on Baidu dataset(consists of 100 thousand classes, 40 million pairs of data), and can predict an image of size 2242243.
-
-
paddlepaddle >= 1.6.2
-
paddlehub >= 1.6.0 | How to install PaddleHub
-
-
-
$ hub install resnet50_vd_10w
- In case of any problems during installation, please refer to: Windows_Quickstart | Linux_Quickstart | Mac_Quickstart
-
-
-
import paddlehub as hub import cv2 classifier = hub.Module(name="resnet50_vd_10w") input_dict, output_dict, program = classifier.context(trainable=True)
-
-
-
def context(trainable=True, pretrained=True)
-
Parameters
- trainable (bool): whether parameters are trainable;
- pretrained (bool): whether load the pre-trained model.
- trainable (bool): whether parameters are trainable;
-
Return
- inputs (dict): model inputs,key is 'image', value is the image tensor;
- outputs (dict): model outputs,key is 'classification' and 'feature_map',values:
- classification (paddle.fluid.framework.Variable): classification result;
- feature_map (paddle.fluid.framework.Variable): feature map extracted by model.
- context_prog(fluid.Program): computation graph, used for transfer learning.
- inputs (dict): model inputs,key is 'image', value is the image tensor;
-
-
def save_inference_model(dirname, model_filename=None, params_filename=None, combined=True)
- Parameters
- dirname: output dir for saving model;
- model_filename: filename of model, default is __model__;
- params_filename: filename of parameters,default is __params__(only effective when
combined
is True); - combined: whether save parameters into one file
- dirname: output dir for saving model;
- Parameters
-
-
1.0.0
First release
-
$ hub install resnet50_vd_10w==1.0.0
-