Skip to content

Latest commit

 

History

History
83 lines (52 loc) · 2.22 KB

File metadata and controls

83 lines (52 loc) · 2.22 KB

shufflenet_v2_imagenet

Module Name shufflenet_v2_imagenet
Category image classification
Network ShuffleNet V2
Dataset ImageNet-2012
Fine-tuning supported or not No
Module Size 11MB
Latest update date -
Data indicators -

I.Basic Information

  • Module Introduction

    • ShuffleNet V2 is a light-weight model proposed by MEGVII in 2018. This model proposed pointwise group convolution and channel shuffle to keep accurary and reduce the amount of computation. This module is based on ShuffleNet V2, trained on ImageNet-2012, and can predict an image of 2242243.

II.Installation

III.Module API Prediction

  • 1、Command line Prediction

    • $ hub run shufflenet_v2_imagenet --input_path "/PATH/TO/IMAGE"
    • If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
  • 2、Prediction Code Example

    • import paddlehub as hub
      import cv2
      
      classifier = hub.Module(name="shufflenet_v2_imagenet")
      test_img_path = "/PATH/TO/IMAGE"
      input_dict = {"image": [test_img_path]}
      result = classifier.classification(data=input_dict)
  • 3、API

    • def classification(data)
      • classification API.

      • Parameters

        • data (dict): key is "image", value is a list of image paths
      • Return

        • result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability

IV.Release Note

  • 1.0.0

    First release

    • $ hub install shufflenet_v2_imagenet==1.0.0