Skip to content

Latest commit

 

History

History
80 lines (51 loc) · 1.96 KB

File metadata and controls

80 lines (51 loc) · 1.96 KB

spinalnet_res101_gemstone

Module Name spinalnet_res101_gemstone
Category image classification
Network resnet101
Dataset gemstone
Fine-tuning supported or not No
Module Size 246MB
Latest update date -
Data indicators -

I.Basic Information

  • Module Introduction

    • This module is based on SpinalNet trained on gemstone dataset, and can be used to classify a gemstone.

II.Installation

III.Module API Prediction

  • 1、Command line Prediction

    • $ hub run spinalnet_res101_gemstone --input_path "/PATH/TO/IMAGE"
    • If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
  • 2、Prediction Code Example

    • import paddlehub as hub
      import cv2
      
      classifier = hub.Module(name="spinalnet_res101_gemstone")
      result = classifier.predict(['/PATH/TO/IMAGE'])
      print(result)
  • 3、API

    • def predict(images)
      • classification API.

      • Parameters

        • images(list[numpy.ndarray]): image data.
      • Return

        • result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability

IV.Release Note

  • 1.0.0

    First release

    • $ hub install spinalnet_res101_gemstone==1.0.0