Module Name | spinalnet_res50_gemstone |
---|---|
Category | image classification |
Network | resnet50 |
Dataset | gemstone |
Fine-tuning supported or not | No |
Module Size | 137MB |
Latest update date | - |
Data indicators | - |
-
- This module is based on SpinalNet trained on gemstone dataset, and can be used to classify a gemstone.
-
-
paddlepaddle >= 2.0.0
-
paddlehub >= 2.0.0 | How to install PaddleHub
-
-
-
$ hub install spinalnet_res50_gemstone
- In case of any problems during installation, please refer to: Windows_Quickstart | Linux_Quickstart | Mac_Quickstart
-
-
-
$ hub run spinalnet_res50_gemstone --input_path "/PATH/TO/IMAGE"
- If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
-
-
-
import paddlehub as hub import cv2 classifier = hub.Module(name="spinalnet_res50_gemstone") result = classifier.predict(['/PATH/TO/IMAGE']) print(result)
-
-
-
def predict(images)
-
classification API.
-
Parameters
- images: list类型,待预测的图像.
-
Return
- result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability
-
-
-
1.0.0
First release
-
$ hub install spinalnet_res50_gemstone==1.0.0
-