Skip to content

Latest commit

 

History

History
82 lines (52 loc) · 2.26 KB

File metadata and controls

82 lines (52 loc) · 2.26 KB

vgg19_imagenet

Module Name vgg19_imagenet
Category image classification
Network vgg19_imagenet
Dataset ImageNet-2012
Fine-tuning supported or not No
Module Size 549MB
Latest update date -
Data indicators -

I.Basic Information

  • Module Introduction

    • VGG is a serial of models for image classification proposed by university of Oxford and DeepMind. The serial models demonstrate 'the deeper the network is, the better the performance is'. And VGG is used for feature extraction as the backbone by most image classification tasks. This module is based on VGG19, trained on ImageNet-2012, and can predict an image of size 2242243.

II.Installation

III.Module API Prediction

  • 1、Command line Prediction

  • 2、Prediction Code Example

    • import paddlehub as hub
      import cv2
      
      classifier = hub.Module(name="vgg19_imagenet")
      test_img_path = "/PATH/TO/IMAGE"
      input_dict = {"image": [test_img_path]}
      result = classifier.classification(data=input_dict)
  • 3、API

    • def classification(data)
      • classification API.

      • Parameters

        • data (dict): key is "image", value is a list of image paths
      • Return

        • result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability

IV.Release Note

  • 1.0.0

    First release

    • $ hub install vgg19_imagenet==1.0.0