Module Name | yolov3_resnet34_coco2017 |
---|---|
Category | object detection |
Network | YOLOv3 |
Dataset | COCO2017 |
Fine-tuning supported or not | No |
Module Size | 164MB |
Latest update date | 2021-03-15 |
Data indicators | - |
-
- YOLOv3 is a one-stage detector proposed by Joseph Redmon and Ali Farhadi, which can reach comparable accuracy but twice as fast as traditional methods. This module is based on YOLOv3, trained on COCO2017, and can be used for object detection.
-
-
paddlepaddle >= 1.6.2
-
paddlehub >= 1.6.0 | How to install PaddleHub
-
-
-
$ hub install yolov3_resnet34_coco2017
- In case of any problems during installation, please refer to: Windows_Quickstart | Linux_Quickstart | Mac_Quickstart
-
-
-
$ hub run yolov3_resnet34_coco2017 --input_path "/PATH/TO/IMAGE"
- If you want to call the Hub module through the command line, please refer to: PaddleHub Command Line Instruction
-
-
-
import paddlehub as hub import cv2 object_detector = hub.Module(name="yolov3_resnet34_coco2017") result = object_detector.object_detection(images=[cv2.imread('/PATH/TO/IMAGE')]) # or # result = object_detector.object_detection((paths=['/PATH/TO/IMAGE'])
-
-
-
def object_detection(paths=None, images=None, batch_size=1, use_gpu=False, output_dir='detection_result', score_thresh=0.5, visualization=True)
-
Detection API, detect positions of all objects in image
-
Parameters
- paths (list[str]): image path;
- images (list[numpy.ndarray]): image data, ndarray.shape is in the format [H, W, C], BGR;
- batch_size (int): the size of batch;
- use_gpu (bool): use GPU or not; set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU
- output_dir (str): save path of images;
- score_thresh (float): confidence threshold;
- visualization (bool): Whether to save the results as picture files;
NOTE: choose one parameter to provide data from paths and images
-
Return
- res (list[dict]): results
- data (list): detection results, each element in the list is dict
- confidence (float): the confidence of the result
- label (str): label
- left (int): the upper left corner x coordinate of the detection box
- top (int): the upper left corner y coordinate of the detection box
- right (int): the lower right corner x coordinate of the detection box
- bottom (int): the lower right corner y coordinate of the detection box
- save_path (str, optional): output path for saving results
- data (list): detection results, each element in the list is dict
- res (list[dict]): results
-
-
def save_inference_model(dirname)
-
Save model to specific path
-
Parameters
- dirname: model save path
-
-
-
PaddleHub Serving can deploy an online service of object detection.
-
-
Run the startup command:
-
$ hub serving start -m yolov3_resnet34_coco2017
-
The servitization API is now deployed and the default port number is 8866.
-
NOTE: If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set.
-
-
-
With a configured server, use the following lines of code to send the prediction request and obtain the result
-
import requests import json import cv2 import base64 def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') # Send an HTTP request data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]} headers = {"Content-type": "application/json"} url = "http://127.0.0.1:8866/predict/yolov3_resnet34_coco2017" r = requests.post(url=url, headers=headers, data=json.dumps(data)) # print prediction results print(r.json()["results"])
-
-
1.0.0
First release
-
1.0.2
Fix the problem of reading numpy
-
1.1.0
Remove fluid api
-
$ hub install yolov3_resnet34_coco2017==1.1.0
-