-
read configuration (yml)
-
read areafile (polygon shape)
-
read DHM (raster)
-
read LU (raster)
-
calculate slope from DHM
-
landuse calculations
-
transform LU raster to LU polygons
-
filter landuse values
-
dissolve polygons
-
explode polygons (multipart to singlepart)
-
calculate area & filter
-
calculate compactness (Schwartzberg algorithm) & filter
-
calculate average slope & filter
-
calculate altitude & filter
-
-
Sun & Radiation calculations
-
calculate sunrise/sunset for the area
-
calculate horizon for viewdirections
-
compare sun angle with horizon → no direct irradiation if sun is below horizon
-
get CCCA Radiation Values
-
Daily to Hourly
-
manipulate hourly values according to sun/horizon situation
-
-
Calculate PV Output of a System
-
includes self shading of modules
-
several python libraries exists, simple one: suntimes
import suntimes
place = SunTimes(lon, lat, alt=200)
The NC Files from CCCA have the following structure (solar radiation example):
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF4 data model, file format HDF5):
comment: Bias corrected (scaled distribution mapping) data of the EURO-CORDEX model MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17
using observational data from Global radiation dataset (ZAMG).
Historical and future projection under the RCP4.5 scenario.
Reference period: 1981-2005
contact: Armin Leuprecht <[email protected]>
institution: Wegener Center for Climate and Global Change, University of Graz, Austria
project: OEKS 15
title: Statistically downscaled Global radiation for Austria until 2100 under the RCP4.5 scenario
Conventions: CF-1.5
history: Wed Oct 5 14:23:40 2016: ncks -d time,0,44999 rsds_SDM_MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_all.nc /work/eau00/eau006/oeks15/euro-cordex-sdm/rcp45/rsds_SDM_MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_1971-2075.nc
NCO: "4.5.5"
references: Matthew B. Switanek et al., Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes, Hydrology and Earth System Sciences Discussions, 2016, doi:10.5194/hess-2016-435
dimensions(sizes): y(297), x(575), time(53610), bnds(2)
variables(dimensions): int32 lambert_conformal(), float64 lat(y, x), float64 lon(y, x), float32 rsds(time, y, x), float64 time(time), float64 time_bnds(time, bnds), int32 x(x), int32 y(y)
groups:
we have t approximate the location to get to the metered values on the conical CRS. - written a function for that (thanks peter for the hints)