Skip to content

itsitgroup/small-emotion-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Speech Emotion Detection

This project detects emotions from speech using a neural network model. It includes scripts for recording audio, preprocessing the data, and evaluating the model.

Model Architecture

The model is a sequential neural network composed of several 1D convolutional layers, activation functions, dropout layers, a max-pooling layer, and a dense layer. Here is a detailed description of each layer and its configuration:

  1. Conv1D Layer 1:

    • Name: conv1d_7
    • Input Shape: [None, 216, 1]
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  2. Activation Layer 1:

    • Name: activation_8
    • Activation: relu
  3. Conv1D Layer 2:

    • Name: conv1d_8
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  4. Activation Layer 2:

    • Name: activation_9
    • Activation: relu
  5. Dropout Layer 1:

    • Name: dropout_3
    • Rate: 0.1
  6. MaxPooling1D Layer:

    • Name: max_pooling1d_2
    • Pool Size: 8
    • Strides: 8
  7. Conv1D Layer 3:

    • Name: conv1d_9
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  8. Activation Layer 3:

    • Name: activation_10
    • Activation: relu
  9. Conv1D Layer 4:

    • Name: conv1d_10
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  10. Activation Layer 4:

    • Name: activation_11
    • Activation: relu
  11. Conv1D Layer 5:

    • Name: conv1d_11
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  12. Activation Layer 5:

    • Name: activation_12
    • Activation: relu
  13. Dropout Layer 2:

    • Name: dropout_4
    • Rate: 0.2
  14. Conv1D Layer 6:

    • Name: conv1d_12
    • Filters: 128
    • Kernel Size: 5
    • Activation: linear
    • Padding: same
    • Initializer: VarianceScaling
  15. Activation Layer 6:

    • Name: activation_13
    • Activation: relu
  16. Flatten Layer:

    • Name: flatten_2
  17. Dense Layer:

    • Name: dense_2
    • Units: 10
    • Activation: linear
    • Initializer: VarianceScaling
  18. Activation Layer 7:

    • Name: activation_14
    • Activation: softmax

Setup

  1. Clone the repository.
  2. Install the dependencies using pip install -r requirements.txt.
  3. Run the project using python main.py.

Usage

  • preprocess.py: Contains functions for recording and preprocessing audio.
  • evaluate.py: Contains the evaluation logic for the model.
  • model.py: Loads the model architecture from a JSON file.
  • utils.py: Contains utility functions and label encodings.
  • main.py: Main entry point for the project.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages