Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EFT implementation #9

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 112 additions & 1 deletion fastpt/FASTPT.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
from scipy.signal import fftconvolve
import scipy.integrate as integrate
from .fastpt_extr import p_window, c_window, pad_left, pad_right
from .matter_power_spt import P_13_reg, Y1_reg_NL, Y2_reg_NL
from .matter_power_spt import P_13_reg, Y1_reg_NL, Y2_reg_NL, J2_integral, J3_integral
from .initialize_params import scalar_stuff, tensor_stuff
from .IA_tt import IA_tt
from .IA_ABD import IA_A, IA_DEE, IA_DBB, P_IA_B
Expand Down Expand Up @@ -172,6 +172,7 @@ def __init__(self, k, nu=None, to_do=None, param_mat=None, low_extrap=None, high
self.OV_do = False
self.kPol_do = False
self.RSD_do = False
self.EFT_do = False

for entry in to_do: # convert to_do list to instructions for FAST-PT initialization
if entry == 'one_loop_dd':
Expand Down Expand Up @@ -223,6 +224,9 @@ def __init__(self, k, nu=None, to_do=None, param_mat=None, low_extrap=None, high
self.RSD_do = True
self.cleft = True
continue
elif entry == 'EFT':
self.EFT_do = True
continue
else:
raise ValueError('FAST-PT does not recognize "' + entry + '" in the to_do list.')

Expand Down Expand Up @@ -305,6 +309,42 @@ def __init__(self, k, nu=None, to_do=None, param_mat=None, low_extrap=None, high
p_mat = tabB[:, [0, 1, 5, 6, 7, 8, 9]]
self.X_RSDB = tensor_stuff(p_mat, self.N, self.m, self.eta_m, self.l, self.tau_l)

if self.EFT_do:
# Computes relevant quantities for all (22) integrals in EFT of IA theory.
nu = -2
p_mat_11 = np.array([[0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 4, 0], [2, -2, 2, 0],
[1, -1, 1, 0], [1, -1, 3, 0], [2, -2, 0, 1]])
p_mat_12 = np.array([[0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 4, 0], [1, -1, 1, 0],
[1, -1, 3, 0], [-1, 1, 1, 0], [-1, 1, 3, 0]
])
p_mat_13 = np.array([[0, 0, 0, 0], [0, 0, 2, 0], [1, -1, 1, 0], [-1, 1, 1, 0]])
p_mat_22 = np.array([[0, 0, 0, 0], [0, 0, 2, 0], [0, 0, 4, 0]])
p_mat_23 = np.array([[0, 0, 0, 0], [0, 0, 2, 0]])
p_mat_24 = np.array([[2, 0, 0, 0], [2, 0, 2, 0], [2, 0, 4, 0], [1, 1, 1, 0],
[1, 1, 3, 0], [1, 1, 5, 0], [0, 2, 0, 0], [0, 2, 2, 0],
[0, 2, 4, 0]])
p_mat_33 = np.array([[0, 0, 0, 0]])
p_mat_34 = np.array([[2, 0, 0, 0], [2, 0, 2, 0], [1, 1, 1, 0,], [1, 1, 3, 0],
[0, 2, 0, 0], [0, 2, 2, 0]])
p_mat_44 = np.array([[4, 0, 0, 0,], [4, 0, 2, 0], [4, 0, 4, 0], [3, 1, 1, 0],
[3, 1, 3, 0], [3, 1, 5, 0], [2, 2, 0, 0], [2, 2, 2, 0],
[2, 2, 4, 0], [2, 2, 6, 0], [1, 3, 1, 0], [1, 3, 3, 0],
[1, 3, 5, 0], [0, 4, 0, 0], [0, 4, 2, 0], [0, 4, 4, 0]])
p_mat_55 = np.array([[4, 0, 0, 0], [4, 0, 2, 0], [4, 0, 4, 0], [2, 2, 0, 0],
[2, 2, 2, 0], [2, 2, 4, 0], [0, 4, 0, 0], [0, 4, 2, 0],
[0, 4, 4, 0]])

self.Jabl_I11 = scalar_stuff(p_mat_11, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I12 = scalar_stuff(p_mat_12, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I13 = scalar_stuff(p_mat_13, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I22 = scalar_stuff(p_mat_22, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I23 = scalar_stuff(p_mat_23, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I24 = scalar_stuff(p_mat_24, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I33 = scalar_stuff(p_mat_33, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I34 = scalar_stuff(p_mat_34, nu, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I44 = scalar_stuff(p_mat_44, -1.6, self.N, self.m, self.eta_m, self.l, self.tau_l)
self.Jabl_I55 = scalar_stuff(p_mat_55, -1.6, self.N, self.m, self.eta_m, self.l, self.tau_l)

### Top-level functions to output final quantities ###
def one_loop_dd(self, P, P_window=None, C_window=None):
nu = -2
Expand Down Expand Up @@ -702,6 +742,77 @@ def presum(x):
# p1loop = interpolate.InterpolatedUnivariateSpline(k,out_1loop) # is this necessary? out_1loop should already be at the correct k spacing
return psmooth(k) + out_1loop + pw(k) * exp(-k ** 2 * Sigma) * (1 + Sigma * k ** 2)

def eft_integrals(self, P, P_window=None, C_window=None):
# Returns the I_nm, J_n integrals based on arXiv:2303.15565. See Eqs. (2.39), (2.40) and
# corresponding kernels in Eqs. (A.1)-(A.3). Power spectra can be obtained using (2.41) and (2.63).

# Coefficients for the (22)-type integrals:
coef_11 = [1219/1470., 671/1029., 32/1715., 1/3., 62/35., 8/35., 1/6.]
coef_12 = [31/105., 94/147., 16/245., 3/10., 1/5., 3/10., 1/5.]
coef_13 = [17/21., 4/21., 1/2., 1/2.]
coef_22 = [1/5., 4/7., 8/35.]
coef_23 = [1/3., 2/3.]
coef_24 = np.sqrt(2/3) * np.array([1/5., 4/7., 8/35., 3*13/35., 37/45,
4/63., 1/5., 4/7., 8/35.])
coef_33 = 1.
coef_34 = np.sqrt(2/3) * np.array([1/3., 2/3., 3*3/5., 1/5., 1/3., 2/3.])
coef_44 = [2/15., 8/21., 16/105., 52/35., 148/135., 16/189., 104/105., 152/63., 676/1155,
8/693., 52/35., 148/135., 16/189., 2/15., 8/21., 16/105.]
coef_55 = [1/30., 1/42., -2/35., -1/15., -1/21., 4/35., 1/30., 1/42., -2/35.]

def get_Inm(P, coef, Jabl, nu, P_window=P_window, C_window=C_window):
# Function to compute the final (22)-integrals:
Ps, mat = self.J_k_scalar(P, Jabl, nu, P_window, C_window)
P_mat = np.multiply(coef, np.transpose(mat))
Inm = np.sum(P_mat, 1)
return Inm, Ps

# Compute the (22)-integrals
I11, Ps = get_Inm(P, coef_11, self.Jabl_I11, -2, C_window)
I12, _ = get_Inm(P, coef_12, self.Jabl_I12, -2, C_window)
I13, _ = get_Inm(P, coef_13, self.Jabl_I13, -2, C_window)
I22, _ = get_Inm(P, coef_22, self.Jabl_I22, -2, C_window)
I23, _ = get_Inm(P, coef_23, self.Jabl_I23, -2, C_window)
I24, _ = get_Inm(P, coef_24, self.Jabl_I24, -2, C_window)
I33, _ = get_Inm(P, coef_33, self.Jabl_I33, -2, C_window)
I34, _ = get_Inm(P, coef_34, self.Jabl_I34, -2, C_window)
I44, _ = get_Inm(P, coef_44, self.Jabl_I44, -1.6, C_window)
I55, _ = get_Inm(P, coef_55, self.Jabl_I55, -1.6, C_window)

I24 /= self.k_old**2
I34 /= self.k_old**2
I44 /= self.k_old**4
I55 /= self.k_old**4

# subtract the low-k limit of the integral:
I22 -= I22[0]
I23 -= I23[0]
I24 -= I24[0]
I33 -= I33[0]
I44 -= I44[0]
I55 -= I55[0]

# Compute the (13)-integrals:
J1 = P_13_reg(self.k_old, Ps)/2
J2 = J2_integral(self.k_old, Ps)
J3 = J3_integral(self.k_old, Ps)

_, I11 = self.EK.PK_original(I11)
_, I12 = self.EK.PK_original(I12)
_, I13 = self.EK.PK_original(I13)
_, I22 = self.EK.PK_original(I22)
_, I23 = self.EK.PK_original(I23)
_, I24 = self.EK.PK_original(I24)
_, I33 = self.EK.PK_original(I33)
_, I34 = self.EK.PK_original(I34)
_, I44 = self.EK.PK_original(I44)
_, I55 = self.EK.PK_original(I55)
_, J1 = self.EK.PK_original(J1)
_, J2 = self.EK.PK_original(J2)
_, J3 = self.EK.PK_original(J3)

return I11, I12, I13, I22, I23, I24, I33, I34, I44, I55, J1, J2, J3

######################################################################################
### functions that use the older version structures. ###
def one_loop(self, P, P_window=None, C_window=None):
Expand Down
67 changes: 67 additions & 0 deletions fastpt/matter_power_spt.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,3 +154,70 @@ def one_loop(k,P,P_window=None,C_window=None,n_pad=None):
return P1,P22_reg,P13_reg


def J2_integral(k, P):
# calculates the J_2 integral in the EFT of IA
# via a discrete convolution integral

N = k.size
n = np.arange(-N+1, N)
dL = log(k[1])-log(k[0])
s = n*dL

cut = 4
high_s = s[s > cut]
low_s = s[s < -cut]
mid_high_s = s[(s <= cut) & (s > 0)]
mid_low_s = s[(s >= -cut) & (s < 0)]

Z = lambda r: (15/r-55*r-55*r**3+15*r**5 +
(60-15/r**2-90*r**2+60*r**4-15*r**6)*log((r+1)/np.absolute(r-1))/2)
Z_low = lambda r: -128*r+384/7/r-128/21/r**3-128/231/r**5-128/1001/r**7
Z_high = lambda r: -128*r**3+384/7*r**5-128/21*r**7

f_mid_low = Z(exp(-mid_low_s))
f_mid_high = Z(exp(-mid_high_s))
f_high = Z_high(exp(-high_s))
f_low = Z_low(exp(-low_s))

f = np.hstack((f_low, f_mid_low, -80, f_mid_high, f_high))

g = fftconvolve(P, f) * dL
g_k = g[N-1:2*N-1]
P_bar = 1/42*k**3/(2*pi)**2*P*g_k

return P_bar


def J3_integral(k, P):
# calculates the J_3 integral in the EFT of IA
# via a discrete convolution integral

N = k.size
n = np.arange(-N+1, N)
dL = log(k[1])-log(k[0])
s = n*dL

cut = 4
high_s = s[s > cut]
low_s = s[s < -cut]
mid_high_s = s[(s <= cut) & (s > 0)]
mid_low_s = s[(s >= -cut) & (s < 0)]

Z = lambda r: (15/r-10*r+164*r**3-150*r**5+45*r**7+
(15-15/r**2+90*r**2-210*r**4+165*r**6-
45*r**8)*log((r+1)/np.absolute(r-1))/2)
Z_low = lambda r: 256/7*r+256/7/r-256/33/r**3-256/273/r**5-256/1001/r**7
Z_high = lambda r: 256*r**3-2304/7*r**5+3328/21*r**7

f_mid_low = Z(exp(-mid_low_s))
f_mid_high = Z(exp(-mid_high_s))
f_high = Z_high(exp(-high_s))
f_low = Z_low(exp(-low_s))

f = np.hstack((f_low, f_mid_low, 64, f_mid_high, f_high))

g = fftconvolve(P, f) * dL
g_k = g[N-1:2*N-1]
P_bar = 1/168*k**3/(2*pi)**2*P*g_k

return P_bar