Anomaly Detection Enhancement Method Using Interpretable Unsupervised Machine Learning in Industrial Information Systems at Multivariate Time Series Environment
https://doi.org/10.5302/J.ICROS.2024.23.0200
Journal of Institute of Control, Robotics and Systems (2024) 30(3)
ISSN:1976-5622
eISSN:2233-4335
- Run
unzip ./SWaT/data/SWaT.zip
to unzip the datasets
or - Run
cd ./SWaT/utils
Runpython gdrivedl.py https://drive.google.com/open?id=1rVJ5ry5GG-ZZi5yI4x9lICB8VhErXwCw ./SWaT
Runpython gdrivedl.py https://drive.google.com/open?id=1iDYc0OEmidN712fquOBRFjln90SbpaE7 ./SWaT
Runmkdir -p ./../data
Runmv ./SWaT ./../data/SWaT
SMD
machine-1-1
, machine-1-2
, machine-1-3
, machine-1-4
, machine-1-5
, machine-1-6
, machine-1-7
, machine-1-8
,
machine-2-1
, machine-2-2
, machine-2-3
, machine-2-4
, machine-2-5
, machine-2-6
, machine-2-7
, machine-2-8
, machine-2-9
,
machine-3-1
, machine-3-2
, machine-3-3
, machine-3-4
, machine-3-5
, machine-3-6
, machine-3-7
, machine-3-8
, machine-3-9
,
machine-3-10
, machine-3-11
- Run
main.ipynb
by jupyter
or - Run main.py by python
# available models : IF, USAD, Encoded-IF
python main.py --dataset SMAP
python main.py --dataset MSL
python main.py --dataset SMD
# available sub-SMD datasets
# python main.py --dataset machine-{a}-{b} --model Encoded-IF --max_epoch 0
# a = {1, 2, 3}
# b = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
- Run
/SWaT/IsolationForest.ipynb
by jupyter - Run
/SWaT/AutoEncoder.ipynb
by jupyter - Run
/SWaT/USAD.ipynb
by jupyter - Run
/SWaT/Encoded-IF.ipynb
by jupyter
Dataset | Train | Test | Dimensions |
---|---|---|---|
SWaT | 496,800 | 449,919 | 51 |
SMAP | 135,183 | 427,617 | 25 |
MSL | 58,317 | 73,729 | 55 |
SMD | 708,405 | 708,420 | 28*28 |