Skip to content

jeanromainroy/armed-conflict

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 

Repository files navigation

African Armed Conflicts: Visualization & Forecasting

Visualizing Interstate and Internal Conflicts using Small & Medium Arms Imports, Military Expenditures, Fraction of Population in the Army, etc. We use a time-series framework to tackle the problem.

Screenshot

Link to interactive map

Model

Bagged Random Forest (0.9) and Neural Network (0.1)

Overview

Let's first look at all the files in the repo

$ tree --dirsfirst --filelimit 100

.
├── analysis
│   ├── data
│   │   ├── nisat
│   │   │   ├── resources
│   │   │   │   ├── NISAT database public user manual.pdf
│   │   │   │   └── nisat_query.png
│   │   │   ├── arms_trades_exports.csv
│   │   │   ├── arms_trades_imports.csv
│   │   │   ├── arms_trades.zip
│   │   │   ├── preproc_arms_import.csv
│   │   │   └── prio_weapons_code.txt
│   │   ├── output
│   │   │   ├── african_countries.json
│   │   │   ├── arms_imports.json
│   │   │   ├── conflicts.json
│   │   │   ├── mil_exp.json
│   │   │   ├── mil_pers.json
│   │   │   ├── population.json
│   │   │   └── predictions.json
│   │   ├── owid
│   │   │   ├── military-expenditure-as-a-share-of-gdp.csv
│   │   │   └── military-personnel-relative-to-total-population.csv
│   │   ├── population
│   │   │   └── world_population.csv
│   │   ├── ucdp
│   │   │   ├── resources
│   │   │   │   └── ucdp-dyadic-191.pdf
│   │   │   └── ucdp-dyadic-191.csv
│   │   └── world
│   │       ├── african_countries.csv
│   │       ├── country_continent.csv
│   │       └── COW country codes.csv
│   ├── african_countries_dict.ipynb
│   ├── nisat-1-scraping.ipynb
│   ├── owid-1-milexp.ipynb
│   ├── owid-1-milpers.ipynb
│   ├── population.ipynb
│   ├── regression.ipynb
│   └── ucdp-1-preproc.ipynb
├── dataviz
│   ├── assets
│   │   ├── css
│   │   │   ├── leaflet.css
│   │   │   └── style.css
│   │   ├── img
│   │   │   └── search.svg
│   │   └── libs
│   │       ├── d3.js
│   │       ├── d3-tip.js
│   │       ├── leaflet.js
│   │       └── localization-en.js
│   ├── data
│   │   ├── african_countries.json
│   │   ├── arms_imports.json
│   │   ├── conflicts.json
│   │   ├── mil_exp.json
│   │   ├── mil_pers.json
│   │   ├── population.json
│   │   ├── predictions.json
│   │   └── world.json
│   ├── scripts
│   │   ├── 1-preproc.js
│   │   ├── 2-map.js
│   │   └── main.js
│   └── index.html
├── README.md
└── screenshot.png

analysis/ : Contains the notebooks to collect, process, train and predict

dataviz/ : Contains the interactive map, made with the D3.js library

Datasets

Launching jupyter notebook

Make sure to cd in analysis/ before launching jupyter notebook. If not, the paths won't work

Authors

  • Jean-Romain Roy - Co-author: data collection, preprocessing, logistic regression, random forest, svm, interactive map - jeanromainroy

About

Visualizing Interstate and Internal Conflicts

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published