Skip to content

Commit

Permalink
refine 7-12
Browse files Browse the repository at this point in the history
  • Loading branch information
jeanwsr committed Aug 11, 2020
1 parent af57436 commit 76ef4bb
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 8 deletions.
Binary file modified chap7/chap7.pdf
Binary file not shown.
48 changes: 40 additions & 8 deletions chap7/chap7.tex
Original file line number Diff line number Diff line change
Expand Up @@ -517,11 +517,6 @@ \subsection{Application of the Formalism to \ce{H_2} and \ce{HeH^+}}
&= {^N}\mathscr{E}_0 - {^{N-1}}\mathscr{E}_1
\end{align}






\ex{7.10}
Since
\begin{align}
Expand Down Expand Up @@ -593,9 +588,46 @@ \subsection{Application of the Formalism to \ce{H_2} and \ce{HeH^+}}
\end{align}

\ex{7.12}



\subex{a.}
\begin{equation}\label{key}
\ket{\Phi} = \ket{\Psi_0} + c\ket{\Psi_{\bar{1}}^{\bar{2}}}
\end{equation}
thus
\begin{equation}\label{key}
\mqty(0 & \Braket{\Psi_0 | \sH | \Psi_{\bar{1}}^{\bar{2}}}\\
\Braket{\Psi_0 | \sH | \Psi_{\bar{1}}^{\bar{2}}} & \Braket{\Psi_{\bar{1}}^{\bar{2}} | \sH-{^{N+1}}E_0 | \Psi_{\bar{1}}^{\bar{2}}})
\mqty(1 \\ c) = \qty({^{N+1}}\mathscr{E}_0 - {^{N+1}}E_0) \mqty(1 \\ c)
\end{equation}
$ \because $
\begin{align}
\Braket{\Psi_0 | \sH | \Psi_{\bar{1}}^{\bar{2}}} &= h_{12} + \sum_{b=1,2}\Braket{\bar{1}b||\bar{2}b} \notag\\
&= -\Braket{11|12} + \Braket{11|12} + \Braket{12|22} \notag\\
&= \Braket{12|22}
\end{align}
$ \therefore $
\begin{equation}\label{ER}
\mqty(0 & \Braket{12|22} \\ \Braket{12|22} & \varepsilon_2 - \varepsilon_1 - 2J_{12} + K_{12} + J_{22})
\mqty(1 \\ c) = \qty({^{N+1}}\mathscr{E}_0 - {^{N+1}}E_0) \mqty(1 \\ c)
\end{equation}
Let
\begin{equation}\label{key}
{^{N+1}}E_R = {^{N+1}}\mathscr{E}_0 - {^{N+1}}E_0
\end{equation}
thus
\begin{align}
{^{N+1}}\mathscr{E}_0 &= {^{N+1}}E_0 + {^{N+1}}E_R \notag\\
&= {^N}E_0 + \varepsilon_2 + {^{N+1}}E_R
\end{align}
\subex{b.}
Solving $ \eqref{ER} $, we get
\begin{align}
{^{N+1}}E_R &= \dfrac{1}{2}\qty(D - \sqrt{D^2 + 4 \Braket{12|22}^2}) \notag\\
&\approx \dfrac{1}{2}\qty(D - D \qty(1 + 2\dfrac{ \Braket{12|22}^2}{D^2})) \notag\\
&= -\dfrac{ \Braket{12|22}^2}{D} \notag\\
&\approx -\dfrac{ \Braket{12|22}^2}{\varepsilon_2 - \varepsilon_1} \notag\\
&= \dfrac{ \Braket{12|22}^2}{\varepsilon_1 - \varepsilon_2}
\end{align}
\subex{c.}



Expand Down

0 comments on commit 76ef4bb

Please sign in to comment.