- python2.7 or python3.7
- sklearn, pandas, networkx, numpy
- path:
ICI/datasets/
- sources for raw data: Digg, Twitter.
- data preprocessing scripts:
clean_diggs.py;clean_twitter.py
- preprocessed datasets:
[filename].edgelist;[filename].seed;[filename].spread
- path:
ICI/utils/
- command:
python benchmark.py [--model model_name] [--dataset file_name] [--output 0/1] [--repeat simulation_times] [--step spread_in_each_step] [--beta ICI_param] [--gamma ICI_param];
- example:
python benchmark.py --model ici --dataset digg --output 1 --repeat 1000 --step 10 --beta 0.9 --gamma 0.6;
-
Input arguments
- datasets:
--dataset={"digg","twitter"}
- support models:
--model={"ic", "icm", "icn", "ici", "lt", "ftm", "ltc"}
- output mode: print all results by
--output 1
- datasets:
Please kindly cite our work if you find our paper or codes helpful.
@inproceedings{zhang2024information,
title={Information Diffusion Meets Invitation Mechanism},
author={Zhang, Shiqi and Sun, Jiachen and Lin, Wenqing and Xiao, Xiaokui and Huang, Yiqian and Tang, Bo},
booktitle={Companion Proceedings of the ACM on Web Conference 2024},
pages={383--392},
year={2024}
}