Skip to content
forked from Eventual-Inc/Daft

Distributed data engine for Python/SQL designed for the cloud, powered by Rust

License

Notifications You must be signed in to change notification settings

jeroenflvr/Daft

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daft dataframes can load any data such as PDF documents, images, protobufs, csv, parquet and audio files into a table dataframe structure for easy querying

Github Actions tests PyPI latest tag Coverage slack community

WebsiteDocsInstallation10-minute tour of DaftCommunity and Support

Daft: Unified Engine for Data Analytics, Engineering & ML/AI

Daft is a distributed query engine for large-scale data processing using Python or SQL, implemented in Rust.

  • Familiar interactive API: Lazy Python Dataframe for rapid and interactive iteration, or SQL for analytical queries
  • Focus on the what: Powerful Query Optimizer that rewrites queries to be as efficient as possible
  • Data Catalog integrations: Full integration with data catalogs such as Apache Iceberg
  • Rich multimodal type-system: Supports multimodal types such as Images, URLs, Tensors and more
  • Seamless Interchange: Built on the Apache Arrow In-Memory Format
  • Built for the cloud: Record-setting I/O performance for integrations with S3 cloud storage

Table of Contents

About Daft

Daft was designed with the following principles in mind:

  1. Any Data: Beyond the usual strings/numbers/dates, Daft columns can also hold complex or nested multimodal data such as Images, Embeddings and Python objects efficiently with it's Arrow based memory representation. Ingestion and basic transformations of multimodal data is extremely easy and performant in Daft.
  2. Interactive Computing: Daft is built for the interactive developer experience through notebooks or REPLs - intelligent caching/query optimizations accelerates your experimentation and data exploration.
  3. Distributed Computing: Some workloads can quickly outgrow your local laptop's computational resources - Daft integrates natively with Ray for running dataframes on large clusters of machines with thousands of CPUs/GPUs.

Getting Started

Installation

Install Daft with pip install getdaft.

For more advanced installations (e.g. installing from source or with extra dependencies such as Ray and AWS utilities), please see our Installation Guide

Quickstart

Check out our 10-minute quickstart!

In this example, we load images from an AWS S3 bucket's URLs and resize each image in the dataframe:

import daft

# Load a dataframe from filepaths in an S3 bucket
df = daft.from_glob_path("s3://daft-public-data/laion-sample-images/*")

# 1. Download column of image URLs as a column of bytes
# 2. Decode the column of bytes into a column of images
df = df.with_column("image", df["path"].url.download().image.decode())

# Resize each image into 32x32
df = df.with_column("resized", df["image"].image.resize(32, 32))

df.show(3)

Dataframe code to load a folder of images from AWS S3 and create thumbnails

Benchmarks

Benchmarks for SF100 TPCH

To see the full benchmarks, detailed setup, and logs, check out our benchmarking page.

More Resources

  • 10-minute tour of Daft - learn more about Daft's full range of capabilities including dataloading from URLs, joins, user-defined functions (UDF), groupby, aggregations and more.
  • User Guide - take a deep-dive into each topic within Daft
  • API Reference - API reference for public classes/functions of Daft

Contributing

To start contributing to Daft, please read CONTRIBUTING.md

Here's a list of good first issues to get yourself warmed up with Daft. Comment in the issue to pick it up, and feel free to ask any questions!

Telemetry

To help improve Daft, we collect non-identifiable data.

To disable this behavior, set the following environment variable: DAFT_ANALYTICS_ENABLED=0

The data that we collect is:

  1. Non-identifiable: events are keyed by a session ID which is generated on import of Daft
  2. Metadata-only: we do not collect any of our users’ proprietary code or data
  3. For development only: we do not buy or sell any user data

Please see our documentation for more details.

https://static.scarf.sh/a.png?x-pxid=cd444261-469e-473b-b9ba-f66ac3dc73ee

Related Projects

Dataframe Query Optimizer Multimodal Distributed Arrow Backed Vectorized Execution Engine Out-of-core
Daft Yes Yes Yes Yes Yes Yes
Pandas No Python object No optional >= 2.0 Some(Numpy) No
Polars Yes Python object No Yes Yes Yes
Modin Eagar Python object Yes No Some(Pandas) Yes
Pyspark Yes No Yes Pandas UDF/IO Pandas UDF Yes
Dask DF No Python object Yes No Some(Pandas) Yes

Check out our dataframe comparison page for more details!

License

Daft has an Apache 2.0 license - please see the LICENSE file.

About

Distributed data engine for Python/SQL designed for the cloud, powered by Rust

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 59.3%
  • Python 22.9%
  • Jupyter Notebook 17.7%
  • Other 0.1%