Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

JetClass dataset #34

Open
wants to merge 11 commits into
base: main
Choose a base branch
from
193 changes: 193 additions & 0 deletions jetnet/datasets/JetClass.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
import logging
import os
from typing import Callable, List, Optional, Set, Tuple, Union

import numpy as np
import uproot
from utils import *

from .dataset import JetDataset


class JetClass(JetDataset):
"""
PyTorch ``torch.unit.data.Dataset`` class for the JetClass dataset.
If root files are not found in the ``data_dir`` directory then dataset will be downloaded
from Zenodo (https://zenodo.org/record/6619768).
Args:
jet_type (Union[str, Set[str]], optional): individual type or set of types out of 'HToBB' ,
"HtoCC", "HtoGG", "HtoWW", "HtoWW2Q1L", "HtoWW4Q", "TTBar", "TTBarLep", "WtoQQ",
"ZJetstoNuNu", "ZtoQQ" ). "all" will get all types. Defaults to "all".
data_dir (str, optional): directory in which data is (to be) stored. Defaults to "./".
particle_features (List[str], optional): list of particle features to retrieve. If empty
or None, gets no particle features. Defaults to
`` ["part_px", "part_py", "part_pz", "part_energy", "part_deta", "part_dphi", "part_d0val",
"part_d0err", "part_dzval", "part_dzerr", "part_charge", "part_isChargedHadron",
"part_isNeutralHadron", "part_isPhoton", "part_isElectron", "part_isMuon"]``.
jet_features (List[str], optional): list of jet features to retrieve. If empty or None,
gets no jet features. Defaults to
``["jet_pt", "jet_eta", "jet_phi", "jet_energy", "jet_nparticles", "jet_sdmass", "jet_tau1",
"jet_tau2", "jet_tau3", "jet_tau4"]``.
"""

zenodo_record_id = 6619768

jet_type = [
"HtoBB",
"HtoCC",
"HtoGG",
"HtoWW",
"HtoWW2Q1L",
"HtoWW4Q",
"TTBar",
"TTBarLep",
"WtoQQ",
"ZJetstoNuNu",
"ZtoQQ",
]
all_particle_features = [
"part_px",
"part_py",
"part_pz",
"part_energy",
"part_deta",
"part_dphi",
"part_d0val",
"part_d0err",
"part_dzval",
"part_dzerr",
"part_charge",
"part_isChargedHadron",
"part_isNeutralHadron",
"part_isPhoton",
"part_isElectron",
"part_isMuon",
]
all_jet_features = [
"jet_pt",
"jet_eta",
"jet_phi",
"jet_energy",
"jet_nparticles",
"jet_sdmass",
"jet_tau1",
"jet_tau2",
"jet_tau3",
"jet_tau4",
]
splits = ["train", "valid", "test", "all"]

def __init__(
self,
jet_type: Union[str, Set[str]] = "all",
data_dir: str = "./",
particle_features: List[str] = all_particle_features,
jet_features: List[str] = all_jet_features,
split: str = "train",
split_fraction: List[float] = [0.7, 0.15, 0.15],
seed: int = 42,
):
self.particle_data, self.jet_data = self.getData(
jet_type, data_dir, particle_features, jet_features
)

super().__init__(
data_dir=data_dir,
particle_features=particle_features,
jet_features=jet_features,
)
self.split = split
self.split_fraction = split_fraction

@classmethod
def getData(self, jet_type, data_dir, particle_features, jet_features):
"""
Downloads JetClass dataset from zenodo if dataset is not already downloaded in
user specified data directory. Loads and returns the JetClass data in the form a
multidimensional NumPy array.

Args:
jet_type (Union[str, Set[str]]): individual type or set of types out of 'HToBB' ,
"HtoCC", "HtoGG", "HtoWW", "HtoWW2Q1L", "HtoWW4Q", "TTBar", "TTBarLep", "WtoQQ",
"ZJetstoNuNu", "ZtoQQ" ).
data_dir (str, optional):
data_dir (str, optional): directory in which data is (to be) stored. Defaults to "./".
particle_features (List[str], optional): list of particle features to retrieve. If empty
or None, gets no particle features. Defaults to
`` ["part_px", "part_py", "part_pz", "part_energy", "part_deta", "part_dphi", "part_d0val",
"part_d0err", "part_dzval", "part_dzerr", "part_charge", "part_isChargedHadron",
"part_isNeutralHadron", "part_isPhoton", "part_isElectron", "part_isMuon"]``.
jet_features (List[str], optional): list of jet features to retrieve. If empty or None,
gets no jet features. Defaults to ["jet_pt", "jet_eta", "jet_phi", "jet_energy", "jet_nparticles", "jet_sdmass", "jet_tau1",
"jet_tau2", "jet_tau3", "jet_tau4"].
Returns:
Tuple[Optional[np.ndarray], Optional[np.ndarray]]: jet data, particle data

"""

dataset_name = "JetClass Validation Set"
file_download_name = "Val_5M"
key = "JetClass_Pythia_val_5M.tar"
record_id = 6619768
# Initializing empty matrix to return jet data
jet_matrix = np.zeros((1, 100000))
# Initializing empty matrix to return particle data
particle_matrix = np.zeros((1, 136))
# Extracting the file path
file_path = checkDownloadZenodoDataset(
data_dir, dataset_name, record_id, key, file_download_name
)
print("Processing Data: ...")
# Looping thrpugh each root file in directory
for jet_file in os.listdir(file_path):
f = os.path.join(file_path, jet_file)
for jet in jet_type:
# Checking if user specified jet type(s) is in one of the filepaths of our directory
if jet in f:
# opening root file that contains user specified jet type
open_file = uproot.open(f)
# root file contains one branch 'tree'
branch = open_file["tree"]
# looping through keys in the tree branch
for i in branch.keys():
for feature in jet_features:
# checking if user specified jet feature type(s) are part of the keys
if feature in i:
arr = branch[i].array()
# Converting the array to a numpy array
arr = np.array(arr)
# Concatenating np array to jet matrix
jet_matrix = np.vstack([jet_matrix, arr])
for particle in particle_features:
# checking if user specified particle feature type(s) are part of the keys
if particle in i:
arr_awk = branch[i].array()
# Converting awkward level array to a list
awk_list = list(arr_awk)
# takes in the 'awk_list' and zero pads the sublists in order to match dimensions
zero_pad_arr = zero_padding(awk_list)
# finds the max length sub list
length_curr = findMaxLengthList(zero_pad_arr)
length_matrix = findMaxLengthList(particle_matrix)
zeros = np.zeros(100001)
if length_curr > length_matrix:
zeros = np.zeros(100001)
diff = length_curr - length_matrix
for i in range(diff):
particle_matrix = np.column_stack((particle_matrix, zeros))
elif length_curr < length_matrix:
zeros = np.zeros(100000)
diff = length_matrix - length_curr
for i in range(diff):
zero_pad_arr = np.column_stack((zero_pad_arr, zeros))
particle_matrix = np.vstack([particle_matrix, zero_pad_arr])
# removing extra row from 'particle_matrix'
updated_particle_matrix = np.delete(particle_matrix, 0, axis=0)
# removing extra row from 'jet_matrix
updated_jet_matrix = np.delete(jet_matrix, 0, axis=0)
# reshaping Jet Matrix
dim1 = updated_jet_matrix.shape[0]
dim2 = updated_jet_matrix.shape[1]
dim_res = dim1 / len(jet_features)
dim = int(dim_res * dim2)
return updated_jet_matrix.reshape(dim, len(jet_features)), updated_particle_matrix
55 changes: 46 additions & 9 deletions jetnet/datasets/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
"""
from __future__ import annotations

import logging
import os
import sys
from os.path import exists
Expand All @@ -17,7 +18,6 @@ def download_progress_bar(file_url: str, file_dest: str):
"""
Download while outputting a progress bar.
Modified from https://sumit-ghosh.com/articles/python-download-progress-bar/

Args:
file_url (str): url to download from
file_dest (str): path at which to save downloaded file
Expand Down Expand Up @@ -48,9 +48,11 @@ def download_progress_bar(file_url: str, file_dest: str):
sys.stdout.write("\n")


def checkDownloadZenodoDataset(data_dir: str, dataset_name: str, record_id: int, key: str):
def checkDownloadZenodoDataset(
data_dir: str, dataset_name: str, record_id: int, key: str, file_download_name: str
):
"""Checks if dataset exists, if not downloads it from Zenodo, and returns the file path"""
file_path = f"{data_dir}/{key}"
file_path = f"{data_dir}/{file_download_name}"
if not exists(file_path):
os.system(f"mkdir -p {data_dir}")
file_url = getZenodoFileURL(record_id, key)
Expand All @@ -76,12 +78,10 @@ def getOrderedFeatures(
data: ArrayLike, features: List[str], features_order: List[str]
) -> np.ndarray:
"""Returns data with features in the order specified by ``features``.

Args:
data (ArrayLike): input data
features (List[str]): desired features in order
features_order (List[str]): name and ordering of features in input data

Returns:
(np.ndarray): data with features in specified order
"""
Expand Down Expand Up @@ -151,13 +151,10 @@ def getSplitting(
"""
Returns starting and ending index for splitting a dataset of length ``length`` according to
the input ``split`` out of the total possible ``splits`` and a given ``split_fraction``.

"all" is considered a special keyword to mean the entire dataset - it cannot be used to define a
normal splitting, and if it is a possible splitting it must be the last entry in ``splits``.

e.g. for ``length = 100``, ``split = "valid"``, ``splits = ["train", "valid", "test"]``,
``split_fraction = [0.7, 0.15, 0.15]``

This will return ``(70, 85)``.
"""

Expand All @@ -167,11 +164,51 @@ def getSplitting(
if split == "all":
return 0, length
else:
assert splits[-1] == "all", "'all' must be last entry in ``splits`` array"
assert splits[-1] == "all", f"'all' must be last entry in ``splits`` array"
splits = splits[:-1]

assert np.sum(split_fraction) <= 1.0, "sum of split fractions must be ≤ 1"

split_index = splits.index(split)
cuts = (np.cumsum(np.insert(split_fraction, 0, 0)) * length).astype(int)
return cuts[split_index], cuts[split_index + 1]


def findMaxLengthList(lst):
"""
Finds max length sublist in list, returns the integer value of the max sublist.
Args:
lst (List): A nested list containing sublists as its elements.

"""
maxLength = max(len(x) for x in lst)
return maxLength


def zero_padding(lst):
"""
Takes in a list containing awkward level array elements. Converts elements into lists
and appends to a new list that will now contain list with nested lists in each eleement
of the outer list. Next, we find the max length of the sublists and use that number to convert
other sublists to lists of that max length sublist by adding zeros at the end of the list in order
to reach the length threshold. Returns a 2D NumPy array of our data after all zero padding is completed.

Args:
lst (List): An asymmetrical list that needs to be converted to a NumPy 2D array and needs zero padding.

"""
returned_list = []
for sub_list in lst:
sub_list = list(sub_list)
returned_list.append(sub_list)

padded_list = []
max_value = findMaxLengthList(returned_list)
for i in returned_list:
# print(type(i))
pad_list = np.pad(i, (0, max_value - len(i)), "constant", constant_values=0)
padded_list.append(pad_list)

zero_padded_arr = np.array(padded_list)

return zero_padded_arr
23 changes: 23 additions & 0 deletions jetnet/utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,3 +205,26 @@ def gen_jet_corrections(
jets[:, :, pt_index][jets[:, :, pt_index] < 0] = 0

return (jets[:, :, :-1], mask) if ret_mask_separate else jets


def findMaxLengthList(lst):
maxLength = max(len(x) for x in lst)
return maxLength


def zero_padding(lst):
returned_list = []
for sub_list in lst:
sub_list = list(sub_list)
returned_list.append(sub_list)

padded_list = []
max_value = findMaxLengthList(returned_list)
for i in returned_list:
# print(type(i))
pad_list = np.pad(i, (0, max_value - len(i)), "constant", constant_values=0)
padded_list.append(pad_list)

zero_padded_arr = np.array(padded_list)

return zero_padded_arr