Skip to content
/ Hydra Public
forked from iscas-system/Hydra

[IEEE Transactions on Computers 23] Hydra: Deadline-aware and Efficiency-oriented Scheduling for Deep Learning Training Jobs on Heterogeneous GPUs

Notifications You must be signed in to change notification settings

jmLee4/Hydra

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hydra

Hydra is a deadline-aware efficient scheduler for deep learning training jobs on heterogeneous GPU clusters. This repository is composed of an event-driven heterogeneous GPU cluster simulator and an implementation of the scheduler.

This repository contains the scheduler implementation and a heterogeneous GPU cluster simulator. The Kubernetes ported version is in another developing repository.

Contents

.
├── cases: all test cases.
├── data: output metrics data.
├── metrics: code for metrics.
├── schedulers: schedulers implementations.
├── simulator: heterogeneous GPU cluster simulator.
├── config.json: configuration file.
├── main.go: entry point.
└── util: helper codes.

Requirements

Linux OS (e.g., CentOS, RedHat, Ubuntu).

Docker >= 20.10.13.

How to use

Step 1: pull docker image

docker pull yzc1114/hydra:latest

Step 2: run docker container runtime

docker run -it yzc1114/hydra:latest /bin/bash

Step 3: (optional) prepare config.json

When you enter the container runtime of this image, you will be at /hydra directory. This directory contains all codes and data used in Hydra.

You can edit config.json to specify the evaluations of the simulation.

{
  // cases_path: specify the datasets path.  
  "cases_path": "/hydra/cases/",
  // reports_path: specify the generated experiments results path.
  "reports_path": "/hydra/reports/",
  // workload: "light" or "heavy".
  "workload": "light", 
  // number_of_jobs: specify the range of the numbers of jobs. It must contain 2 integers that form a range. Each number will be fixed to a multiple of 10.
  // For example, the number of jobs will step up by 10 from 0 to 200 in this case. Max number of jobs is restricted to 400.
  "number_of_jobs": [0, 200], 
  // algorithms: specify the tested algorithms. hydra_alpha_1 stands for the parameter alpha is 1 second
  // hydra_alpha_0 is the pure heuristic version of hydra and hydra_alpha_5 is the default version of hydra.
  "algorithms": ["hydra_alpha_0", "hydra_alpha_1", "hydra_alpha_3", "hydra_alpha_5", "hydra_alpha_7", "hydra_alpha_9", "allox", "gavel", "chronus"]
}

This image contains vim which can be used to edit config.json directly in container runtime.

Note: When the number of jobs is set large (300 ~ 400), the evaluation speed will be slow.

step 4: execute hydra command

hydra /hydra/config.json or hydra to evaluate in a default setting.

step 5: check the results

The experiments result output data is stored in /hydra/reports/[name]-[datetime].json in default. The output directory can be specified in config.json

Cases

Generate manually

  1. Download ali-trace from https://github.com/alibaba/clusterdata
  2. Extract files.
  3. Use cases/preprocess.ipynb to generate cases.

Use pre-generated cases

cases/20_ddl.csv and cases/30_ddl.csv are pre-generated cases. The former is the light workload while the latter is the heavy workload.

Report Analysis

A report is generated to show all the metrics we evaluate. It is a json file with the below format. Explanatory comments have been included in the json to explain the meanings of the fields.

{
    // "case_name", "case_ranges" and "cluster_configs" are the meta simulation parameters of this report.
	"case_name": "30_ddl", 
	"case_ranges": [
		[
			0,
			400
		]
	],
	"cluster_configs": [
		{
			"GPUs": {
				"GTX2080Ti": 15,
				"A100": 10,
				"V100": 20
			},
			"gpu_count": 45
		}
	],
	// "reports" maps scheduler to their simulated metrics.
	"reports": {
		"AnyScheduler": [
			{
				"scheduler_name": "AnyScheduler",
				"scheduler_info": "AnyInfo",
				"cluster_config": {
					"GPUs": {
						"GTX2080Ti": 15,
						"A100": 10,
						"V100": 20
					},
					"gpu_count": 45
				},
				"case_range": [
					0,
					400
				],
				// "execution records all the detailed metrics."
				"execution": {
					"average_jct_seconds": 37859.0125,
					"average_queue_delay_seconds": 23211.97,
					"average_ddl_violation_duration_seconds": 1827.4782608695627,
					"total_ddl_violation_duration_seconds": 42031.99999999994,
					"ddl_violated_jobs_count": 23,
					"finished_jobs_count": 400,
					"do_schedule_count": 398,
					"average_do_schedule_duration_ms": 0,
					"max_do_schedule_duration_ms": 0,
					"scheduler_execution_record_extra": null
				}
			}
		],
		"HydraBABWithHeuristic": [
			{
			    ...
				"execution": {
				    ...
				    // "scheduler_execution_record_extra" records info for specific scheduler. 
					"scheduler_execution_record_extra": {
						"average_k_means_round_duration_ms": 679,
						"max_k_means_round_duration_ms": 5301,
						"min_k_means_round_duration_ms": 5,
						"distance_solver_record_extra": {
							"memorized_call_count": 3511200,
							"non_memorized_call_count": 97800,
							"call_count": 3609000,
							"distance_algo_record_extra": {
								"call_count": 97800,
								"use_min_cost_algo_count": 31480,
								"use_sjf_greedy_count": 66320,
								"average_min_cost_algo_durations_ms": 136,
								// "min_cost_algo_record_extra" records min-cost algorithm execution details.
								"min_cost_algo_record_extra": {
									"call_count": 31480,
									"exceed_latency_count": 303,
									"use_fall_back_count": 0,
									"average_duration_nano": 130133594,
									"average_expand_nodes_count": 1860.141836086404,
									"average_jobs_count": 0,
									"max_jobs_count": 16,
									"average_total_cut_count": 1825.7169631512072,
									"average_after_expand_cut_count": 744.4926937738246,
									"average_prediction_is_optimus_cut_count": 18.36207115628971,
									"average_prediction_reduce_min_cost_count": 0,
									"average_expand_nothing_cut_count": 0,
									"average_c_hat_cut_count": 243.99666454891994,
									"jobs_count_2_summary_record": [
										{
											"call_count": 3,
											"jobs_count": 16,
											"exceed_latency_count": 3,
											"use_fall_back_count": 0,
											"average_expand_nodes_count": 254616.66666666666,
											"average_duration_nano": 5000072888,
											"average_total_cut_count": 194211.33333333334,
											"average_expand_nothing_cut_count": 0,
											"average_c_hat_cut_count": 0,
											"average_after_expand_cut_count": 60358.666666666664,
											"average_prediction_is_optimus_cut_count": 2606.3333333333335,
											"average_prediction_reduce_min_cost_count": 0
										}
									]
								}
							}
						}
					}
				}
			}
		]
	}
}

About

[IEEE Transactions on Computers 23] Hydra: Deadline-aware and Efficiency-oriented Scheduling for Deep Learning Training Jobs on Heterogeneous GPUs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 94.8%
  • Jupyter Notebook 5.1%
  • Dockerfile 0.1%