Skip to content

A simple interface to instantiate Reinforcement Learning environments with SUMO for Traffic Signal Control. Compatible with Gym Env from OpenAI and MultiAgentEnv from RLlib.

License

Notifications You must be signed in to change notification settings

joaovitorblabres/sumo-rl

 
 

Repository files navigation

Project Status: Active – The project has reached a stable, usable state and is being actively developed. License

SUMO-RL

SUMO-RL provides a simple interface to instantiate Reinforcement Learning environments with SUMO for Traffic Signal Control.

The main class SumoEnvironment inherits MultiAgentEnv from RLlib.
If instantiated with parameter 'single-agent=True', it behaves like a regular Gym Env from OpenAI.
TrafficSignal is responsible for retrieving information and actuating on traffic lights using TraCI API.

Goals of this repository:

  • Provide a simple interface to work with Reinforcement Learning for Traffic Signal Control using SUMO
  • Support Multiagent RL
  • Compatibility with gym.Env and popular RL libraries such as stable-baselines3 and RLlib
  • Easy customisation: state and reward definitions are easily modifiable

Install

Install SUMO latest version:

sudo add-apt-repository ppa:sumo/stable
sudo apt-get update
sudo apt-get install sumo sumo-tools sumo-doc

Don't forget to set SUMO_HOME variable (default sumo installation path is /usr/share/sumo)

echo 'export SUMO_HOME="/usr/share/sumo"' >> ~/.bashrc
source ~/.bashrc

Important: for a huge performance boost (~8x) with Libsumo, you can declare the variable:

export LIBSUMO_AS_TRACI=1

Notice that you will not be able to run with sumo-gui if this is active (more details).

Install SUMO-RL

Stable release version is available through pip

pip install sumo-rl

Alternatively you can install using the latest (unreleased) version

git clone https://github.com/LucasAlegre/sumo-rl
cd sumo-rl
pip install -e .

Examples

Check experiments to see how to instantiate a SumoEnvironment and use it with your RL algorithm.

Q-learning in a one-way single intersection:

python3 experiments/ql_single-intersection.py

RLlib A3C multiagent in a 4x4 grid:

python3 experiments/a3c_4x4grid.py

stable-baselines3 DQN in a 2-way single intersection:

python3 experiments/dqn_2way-single-intersection.py

Plotting results:

python3 outputs/plot.py -f outputs/2way-single-intersection/a3c

alt text

Citation

If you use this repository in your research, please cite:

@misc{sumorl,
    author = {Lucas N. Alegre},
    title = {SUMO-RL},
    year = {2019},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/LucasAlegre/sumo-rl}},
}

About

A simple interface to instantiate Reinforcement Learning environments with SUMO for Traffic Signal Control. Compatible with Gym Env from OpenAI and MultiAgentEnv from RLlib.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%