-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(scripts): adding a video generation script for gans
feat(scripts): updated gen_video_gan feat(video-gan): max-frames arg feat(scripts): adding --compare and --n-inferences, fixing preprocess and postprocess cvtColor feat(scripts): --compare option for image gan generation chore: black docs(inference): video gan inference
- Loading branch information
Showing
3 changed files
with
236 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
import argparse | ||
import json | ||
import os | ||
import sys | ||
from pathlib import Path | ||
|
||
import cv2 | ||
import numpy as np | ||
import torch | ||
from torchvision import transforms | ||
from torchvision.utils import save_image | ||
from tqdm import tqdm | ||
|
||
sys.path.append("../") | ||
|
||
from models import gan_networks | ||
from options.train_options import TrainOptions | ||
|
||
|
||
def parse_args() -> argparse.Namespace: | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument( | ||
"--model-in-file", | ||
help="file path to generator model (.pth file)", | ||
type=Path, | ||
required=True, | ||
) | ||
parser.add_argument( | ||
"--video-in", help="video to transform", type=Path, required=True | ||
) | ||
parser.add_argument( | ||
"--video-out", help="transformed video", type=Path, required=True | ||
) | ||
parser.add_argument( | ||
"--img-width", type=int, help="image width, defaults to model crop size" | ||
) | ||
parser.add_argument( | ||
"--img-height", type=int, help="image height, defaults to model crop size" | ||
) | ||
parser.add_argument( | ||
"--max-frames", type=int, help="Select total number of frames to generate" | ||
) | ||
parser.add_argument("--fps", type=int, help="select FPS") | ||
parser.add_argument("--cpu", action="store_true", help="whether to use CPU") | ||
parser.add_argument("--gpuid", type=int, default=0, help="which GPU to use") | ||
parser.add_argument( | ||
"--compare", | ||
action="store_true", | ||
help="put the input video on the left side to compare", | ||
) | ||
parser.add_argument( | ||
"--n-inferences", | ||
type=int, | ||
default=1, | ||
help="Number of recursive inferences per frame", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
def get_z_random( | ||
batch_size: int = 1, nz: int = 8, random_type: str = "gauss" | ||
) -> torch.Tensor: | ||
if random_type == "uni": | ||
z = torch.rand(batch_size, nz) * 2.0 - 1.0 | ||
elif random_type == "gauss": | ||
z = torch.randn(batch_size, nz) | ||
return z.detach() | ||
|
||
|
||
def iter_video_frames(video_path: Path, max_frames: int) -> np.ndarray: | ||
"""Iterate over frames in a video.""" | ||
cap = cv2.VideoCapture(str(video_path)) | ||
max_frames = min(max_frames, int(cap.get(cv2.CAP_PROP_FRAME_COUNT))) | ||
|
||
for _ in tqdm(range(max_frames), desc="Processing video frames"): | ||
ret, frame = cap.read() | ||
if not ret: | ||
break | ||
yield frame | ||
|
||
|
||
def preprocess_frame( | ||
frame: np.ndarray, img_width: int, img_height: int, transforms: transforms.Compose | ||
) -> torch.Tensor: | ||
"""Preprocess a single frame.""" | ||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
frame = cv2.resize(frame, (img_width, img_height), interpolation=cv2.INTER_CUBIC) | ||
frame = transforms(frame) | ||
return frame | ||
|
||
|
||
def postprocess_frame(frame: torch.Tensor) -> np.ndarray: | ||
frame = frame.detach().cpu().float().numpy() | ||
frame = np.transpose(frame, (1, 2, 0)) | ||
frame = (frame + 1) / 2.0 * 255.0 | ||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | ||
frame = frame.astype(np.uint8) | ||
return frame | ||
|
||
|
||
def load_model(model_dir: Path, model_filename: Path, device: torch.device): | ||
train_json_path = model_dir / "train_config.json" | ||
with open(train_json_path, "r") as jsonf: | ||
train_json = json.load(jsonf) | ||
opt = TrainOptions().parse_json(train_json, set_device=False) | ||
if opt.model_multimodal: | ||
opt.model_input_nc += opt.train_mm_nz | ||
opt.jg_dir = "../" | ||
|
||
model = gan_networks.define_G(**vars(opt)) | ||
model.eval() | ||
model.load_state_dict(torch.load(model_dir / model_filename, map_location=device)) | ||
|
||
model = model.to(device) | ||
return model, opt | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
|
||
device = torch.device("cpu") if args.cpu else torch.device(f"cuda:{args.gpuid}") | ||
|
||
# Load the model. | ||
model_dir = args.model_in_file.parent | ||
print(f"Model directory {model_dir}.") | ||
model, opt = load_model(model_dir, args.model_in_file.name, device) | ||
|
||
img_width = args.img_width if args.img_width is not None else opt.data_crop_size | ||
img_height = args.img_height if args.img_height is not None else opt.data_crop_size | ||
transforms = transforms.Compose( | ||
[ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | ||
] | ||
) | ||
|
||
video_width = img_width * 2 if args.compare else img_width | ||
video_height = img_height | ||
video_writer = cv2.VideoWriter( | ||
str(args.video_out), | ||
cv2.VideoWriter_fourcc("M", "J", "P", "G"), | ||
args.fps, | ||
(video_width, video_height), | ||
) | ||
|
||
# Optional noise. | ||
# Noise is sampled only once. The same noise is used for all video frames. | ||
if opt.model_multimodal: | ||
z_random = get_z_random(batch_size=1, nz=opt.train_mm_nz) | ||
z_random = z_random.to(device) | ||
|
||
with torch.inference_mode(): | ||
for frame in iter_video_frames(args.video_in, args.max_frames): | ||
original_frame = frame.copy() | ||
for _ in range(args.n_inferences): | ||
frame = preprocess_frame(frame, img_width, img_height, transforms) | ||
frame = frame.to(device) | ||
frame = frame.unsqueeze(0) | ||
|
||
if opt.model_multimodal: | ||
z_real = z_random.view(z_random.size(0), z_random.size(1), 1, 1) | ||
z_real = z_real.expand( | ||
z_random.size(0), z_random.size(1), frame.size(2), frame.size(3) | ||
) | ||
frame = torch.cat((frame, z_real), dim=1) | ||
|
||
frame = model(frame)[0] | ||
frame = postprocess_frame(frame) | ||
|
||
if args.compare: | ||
frame = np.concatenate((original_frame, frame), axis=1) | ||
|
||
video_writer.write(frame) | ||
|
||
print(f"Saving video to {args.video_out}.") | ||
video_writer.release() |