-
Install Python 2.7 and pip using the instructions found here: https://wiki.python.org/moin/BeginnersGuide/Download
-
Install virtualenv using pip
pip install virtualenv
-
Clone the DLV repository using the following command:
git clone https://github.com/joshua-smith4/DLV_intellifeatures.git <path_to_DLV>
-
Create a python virtual environment in the DLV directory
cd <path_to_DLV> virtualenv -p <python2.7_executable> . source bin/activate
-
Download and install opencv with python bindings using the instructions found here (make sure to build python bindings):
https://docs.opencv.org/3.4.5/d7/d9f/tutorial_linux_install.html Make sure to include configuration option PYTHON2_INCLUDE_DIR2 as <path_to_DLV>/include/python2.7
-
Download and install z3 as shown here: https://github.com/Z3Prover/z3 (Remember to follow the instructions for Python install with virtualenv)
git clone https://github.com/Z3Prover/z3.git <path_to_z3> cd <path_to_z3> source <path_to_DLV>/bin/activate python scripts/mk_make.py --python cd build make -j4 make install
-
Install all other dependencies with:
pip install -r requirements.txt
-
Set up keras environment with a keras config file at ~/.keras/keras.json with the text:
{ "floatx": "float32", "epsilon": 1e-07, "backend": "theano", "image_data_format": "channels_last", "image_dim_ordering": "th" }
-
To run the DLV, checkout the desired branch
git checkout <desired_branch> (eg. origin/orig_dlv, origin/intellifeatures) python main.py --dataset=[mnist,cifar10,gtsrb] --mode=[train,read] --numtestimages=N --numfeaturedims=M
-
In order to run GTSRB, you must first download the training dataset here: http://benchmark.ini.rub.de/Dataset/GTSRB_Final_Training_Images.zip and place the folder "Final_Training" at the location networks/GTSRB
-
For faster run time by connecting to a supported GPU follow the instructions here: https://keras.io/getting-started/faq/#how-can-i-run-keras-on-gpu
-
Download and install git by following the instructions here: https://git-scm.com/downloads
-
Download and install the Visual Studio C++ build tools using visual studio installer
-
Install Python 2.7 and pip using the instructions found here: https://wiki.python.org/moin/BeginnersGuide/Download
-
Open a Visual Studio Developer Command Prompt
-
Install virtualenv using pip
pip install virtualenv
-
Clone the DLV repository using the following command:
git clone https://github.com/joshua-smith4/DLV_intellifeatures.git <path_to_DLV>
-
Create a python virtual environment in the DLV directory
cd <path_to_DLV> virtualenv -p <python2.7_executable> . Scripts\\activate.bat
-
Download and install opencv using the instructions found here (make sure to build python bindings):
https://docs.opencv.org/3.4.5/d3/d52/tutorial_windows_install.html (https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.3/opencv-3.4.3-vc14_vc15.exe/download)
-
Download and install z3 as shown here: https://github.com/Z3Prover/z3 (Remember to follow the instructions for Python install with virtualenv)
git clone https://github.com/Z3Prover/z3.git <path_to_z3> cd <path_to_z3> <path_to_DLV>\\Scripts\\activate.bat python scripts/mk_make.py --python cd <path_to_z3>\\build nmake
-
Add <path_to_z3>\build\python to the PYTHONPATH environment variable and <path_to_z3>\build to the PATH environment variable.
-
Install all other dependencies with:
pip install -r requirements.txt
-
Set up keras environment with a keras config file (keras.json generally found at C:\Users\) with the text:
{ "floatx": "float32", "epsilon": 1e-07, "backend": "theano", "image_data_format": "channels_last", "image_dim_ordering": "th" }
-
To run the DLV, checkout the desired branch
git checkout <desired_branch> (eg. origin/orig_dlv, origin/intellifeatures) python main.py --dataset [mnist,cifar10,gtsrb,imageNet]